Keras 是一个高级的 (high-level) 深度学习框架,作者是 François Chollet。Keras 可以以两种方法运行:
首先Keras中的fit()函数传入的x_train和y_train是被完整的加载进内存的,当然用起来很方便,但是如果我们数据量很大,那么是不可能将所有数据载入内存的,必将导致内存泄漏,这时候我们可以用fit_generator函数来进行训练。
我们希望预测Twitter上一条新闻会被转发和点赞多少次。模型的主要输入是新闻本身(一个词语序列)。但我们还可以拥有额外的输入(如新闻发布的日期等)。这个模型的损失函数将由两部分组成,辅助的损失函数评估仅仅基于新闻本身做出预测的情况,主损失函数评估基于新闻和额外信息的预测的情况,即使来自主损失函数的梯度发生弥散,来自辅助损失函数的信息也能够训练Embeddding和LSTM层。在模型中早点使用主要的损失函数是对于深度网络的一个良好的正则方法。总而言之,该模型框图如下:
网络层堆叠形成网络模型,网络模型由输入数据得到预测值。损失函数比较预测值与实际值,得到损失函数值:用来评估预测结果的好坏;优化方法用损失值来更新网络模型的权重系数。
关于Keras中,当数据比较大时,不能全部载入内存,在训练的时候就需要利用train_on_batch或fit_generator进行训练了。
我们使用损失函数来计算一个给定的算法与它所训练的数据的匹配程度。损失计算是基于预测值和实际值之间的差异来做的。如果预测值与实际值相差甚远,损失函数将得到一个非常大的数值。
损失函数,即用于学习的反馈信号;损失函数将这些预测值与目标进行比较,得到损失值,用于衡量网络预测值与预期结果的匹配程度
从上图可以看出,训练神经网络是一个迭代的过程,输入X经过层的变化后,预测值与真实目标值在损失函数下计算出损失值,再通过优化器重新学习更新权重,经过N轮迭代后停止权重更新,也就确定了模型。
深度学习框架中涉及很多参数,如果一些基本的参数如果不了解,那么你去看任何一个深度学习框架是都会觉得很困难,下面介绍几个新手常问的几个参数。 batch 深度学习的优化算法,说白了就是梯度下降。每次的参数更新有两种方式。 第一种,遍历全部数据集算一次损失函数,然后算函数对各个参数的梯度,更新梯度。这种方法每更新一次参数都要把数据集里的所有样本都看一遍,计算量开销大,计算速度慢,不支持在线学习,这称为Batch gradient descent,批梯度下降。 另一种,每看一个数据就算一下损失函数,然后求梯度更新
前面介绍了keras文档一二 keras中文文档, keras中文-快速开始Sequential模型
如果说两代 Tensorflow 有什么根本不同,那应该就是 Tensorflow 2.0 更注重使用的低门槛,旨在让每个人都能应用机器学习技术。考虑到它可能会成为机器学习框架的又一个重要里程碑,本文会介绍 1.x 和 2.x 版本之间的所有(已知)差异,重点关注它们之间的思维模式变化和利弊关系。
首先了解Keras的一个很好的途径就是通过 文档 Keras 中文文档地址: https://keras.io/zh/models/about-keras-models/
一般来说,监督学习的目标函数由损失函数和正则化项组成。(Objective = Loss + Regularization)
1. loss是整体网络进行优化的目标, 是需要参与到优化运算,更新权值W的过程的
理解深度学习需要熟悉一些简单的数学概念:Tensors(张量)、Tensor operations 张量操作、differentiation微分、gradient descent 梯度下降等等。
近年来,机器学习的进步使我们仅用几行代码就能生成惊为天人的艺术作品。如果可以将艺术作品的原型设计速度提高100倍,让用户真正地与创作媒介合为一体,效果会怎么样呢? 如果我们可以用机器学习的模式来扩展生物学习的模式,那么机器显然不是我们的艺术竞争对手,而是提高我们艺术创造力的途径。 本期,Siraj将教大家通过在Keras中用TensorFlow后端编写Python脚本,把原图像变成任意艺术家的风格,从而实现风格迁移。 【雷锋字幕组】招募进行时 我们是一个由海内外优秀开发者组成的志愿者团队,致力于经典机器学习
目前为止,我们只是使用了TensorFlow的高级API —— tf.keras,它的功能很强大:搭建了各种神经网络架构,包括回归、分类网络、Wide & Deep 网络、自归一化网络,使用了各种方法,包括批归一化、dropout和学习率调度。事实上,你在实际案例中95%碰到的情况只需要tf.keras就足够了(和tf.data,见第13章)。现在来深入学习TensorFlow的低级Python API。当你需要实现自定义损失函数、自定义标准、层、模型、初始化器、正则器、权重约束时,就需要低级API了。甚至有时需要全面控制训练过程,例如使用特殊变换或对约束梯度时。这一章就会讨论这些问题,还会学习如何使用TensorFlow的自动图生成特征提升自定义模型和训练算法。首先,先来快速学习下TensorFlow。
Keras 函数式 API 是定义复杂模型(如多输出模型、有向无环图,或具有共享层的模型)的方法。
Keras是最广泛使用的深度学习框架之一。它在易于使用的同时,在性能方面也与TensorFlow,Caffe和MXNet等更复杂的库相当。除非你的应用程序需要一些非常低级别和复杂的代码,否则Keras会为你提供最好的帮助!
Keras是一个极简和高度模块化的神经网络库,Keras由纯Python编写而成并基于Theano或Tensorflow。Keras 为支持快速实验而生,如果你有如下需求,请选择Keras:
文件中保存的仅仅是参数张量的数值,没有其他的结构参数,需要使用相同的网络结构才能恢复网络数据,一般在拥有源文件的情况下使用。
Python 的 Keras 库来学习手写数字分类,将手写数字的灰度图像(28 像素 ×28 像素)划分到 10 个类别 中(0~9) 神经网络的核心组件是层(layer),它是一种数据处理模块,它从输入数据中提取表示,紧接着的一个例子中,将含有两个Dense 层,它们是密集连接(也叫全连接)的神经层,最后是一个10路的softmax层,它将返回一个由 10 个概率值(总和为 1)组成的数组。每个概率值表示当前数字图像属于 10 个数字类别中某一个的概率 损失函数(loss function):网络如何衡量在训练数据上的性能,即网络如何朝着正确的方向前进 优化器(optimizer):基于训练数据和损失函数来更新网络的机制
在开篇之前,请允许我吐槽几段文字,发泄一下TF的不便之处。如果对这部分内容不敢兴趣请直接看正文内容。
在TensorFlow2.0中,Keras是一个用于构建和训练深度学习模型的高阶 API。因此如果你正在使用TensorFow2.0,那么使用Keras构建深度学习模型是您的不二选择。在Keras API中总共有如下三大块:
书中其中一个应用例子就是用于预测波士顿的房价,这是一个有趣的问题,因为房屋的价值变化非常大。这是一个机器学习的问题,可能最适用于经典方法,如 XGBoost,因为数据集是结构化的而不是感知的。然而,这也是一个数据集,深度学习提供了一个非常有用的功能,就是编写一个新的损失函数,有可能提高预测模型的性能。这篇文章的目的是来展示深度学习如何通过使用自定义损失函数来改善浅层学习问题。
我们以最简单的网络定义来学习pytorch的基本使用方法,我们接下来要定义一个神经网络,包括一个输入层,一个隐藏层,一个输出层,这些层都是线性的,给隐藏层添加一个激活函数Relu,给输出层添加一个Sigmoid函数
如果你拿起这本书,你可能已经意识到深度学习在最近对人工智能领域所代表的非凡进步。我们从几乎无法使用的计算机视觉和自然语言处理发展到了在你每天使用的产品中大规模部署的高性能系统。这一突然进步的后果几乎影响到了每一个行业。我们已经将深度学习应用于几乎每个领域的重要问题,跨越了医学影像、农业、自动驾驶、教育、灾害预防和制造等不同领域。
选自Stanford 作者:李飞飞等 机器之心编译 参与:Smith、蒋思源 斯坦福大学的课程 CS231n (Convolutional Neural Networks for Visual Recognition) 作为深度学习和计算机视觉方面的重要基础课程,在学界广受推崇。今年 4 月,CS231n 再度开课,全新的 CS231n Spring 2017 仍旧由李飞飞带头,带来了很多新鲜的内容。今天机器之心给大家分享的是其中的第八讲——深度学习软件(Deep Learning Software)。主
二分类可能是机器学习最常解决的问题。我们将基于评论的内容将电影评论分类:正类和父类。
之前所有的神经网络都是基于Sequential模型实现的,而且网络都是层的线性叠加。但是在实际情况下,有些网络需要多个独立的输入,有些网络需要多个输出;而且有些层之间具有内部分支。
这篇文章的主要内容来自作者的自身经验和一些在线资源(如最出名的斯坦福大学的CS231n课程讲义),是关于如何调试卷积神经网络从而提升其性能的。
对于简单、无状态的自定义操作,你也许可以通过 layers.core.Lambda 层来实现。但是对于那些包含了可训练权重的自定义层,你应该自己实现这种层。
TensorFlow 是解决机器学习和深度学习问题的流行库之一。在开发供 Google 内部使用后,它作为开源发布供公众使用和开发。让我们理解 TensorFlow 的三个模型:数据模型,编程模型和执行模型。
该文章介绍了如何使用神经张量网络处理自然语言数据,包括文本分类、情感分析等任务。文章还探讨了如何通过多关系数据集训练神经张量网络,并给出了一个知识库应用案例。
在开始学习Keras之前,一些基础知识是必备的,关于深度学习的基本概念和技术,在使用Keras之前大体了解一下基础知识,这将减少你学习中的困惑。
前言:深度学习的初始化参数指的是在网络训练之前,对各个节点的权重和偏置进行初始化的过程,很多时候我们以为这个初始化是无关紧要的,不需要什么讲究,但是实际上,一个参数的初始化关系到网络能否训练出好的结果或者是以多快的速度收敛,这都是至关重要的,有时候因为参数初始化的缘故,甚至得不到好的训练结果。本文就来讨论一下参数初始化到底有什么讲究以及常见的参数初始化的一些策略方法。阅读本文需要神经网络相关背景,能够理解误差反向传播算法的实现过程。
终于有点时间学一下之前碎碎念的TensorFlow,主要代码为主,内容来源于《简明的TensorFlow2》作者 李锡涵 李卓恒 朱金鹏,人民邮电出版社2020.9第1版。
用keras搭好模型架构之后的下一步,就是执行编译操作。在编译时,经常需要指定三个参数
相信大家经过之前几篇文章的学习,已经对人工智能以及它和Keras的关系有了基本的认识,那么我们即将正式开始对于Keras的学习。
在本文中将介绍与我的毕设论文演示案例相关的TensorFlow的一些基础知识,包括张量、计算图、操作、数据类型和维度以及模型的保存,接着在第二部分,本文将介绍演示案例代码中用到的一些TensorFlow 2.0中的高阶API,代码中不会涉及像TensorFlow 1.x版本中的Session等一些较为复杂的东西,所有的代码都是基于高阶API中的tf.keras.models来构建的(具体模型构建使用Sequential按层顺序构建),可以大大的方便读者更好的理解代码。
《统计学习方法》中指出,机器学习的三个要素是模型,策略和优算法,这当然也适用于深度学习,而我个人觉得keras训练也是基于这三个要素的,先建立深度模型,然后选用策略(目标函数),采用优化器,编译和训练模型。
本文摘自 http://keras-cn.readthedocs.io/en/latest/layers/about_layer/,链接异常请阅读原文查看 常用层对应于core模块,core内部定义了一系列常用的网络层,包括全连接、激活层等 泛型模型接口 为什么叫“泛型模型”,请查看一些基本概念 Keras的泛型模型为Model,即广义的拥有输入和输出的模型,我们使用Model来初始化一个泛型模型 from keras.models import Modelfrom keras.layers imp
利用 Keras 函数式 API,你可以构建类图(graph-like)模型、在不同的输入之间共享某一层,并且还可以像使用 Python 函数一样使用 Keras 模型。Keras 回调函数和 TensorBoard 基于浏览器的可视化工具,让你可以在训练过程中监控模型
在本文中,将展示一个简单的分步过程,以在PyTorch中构建2层神经网络分类器(密集连接),从而阐明一些关键功能和样式。
使用到的数据集为IMDB电影评论情感分类数据集,该数据集包含 50,000 条电影评论,其中 25,000 条用于训练,25,000 条用于测试。每条评论被标记为正面或负面情感,因此该数据集是一个二分类问题。
1、如果要对 N 个类别的数据点进行分类,网络的最后一层应该是大小为 N 的 Dense 层。
模型需要知道输入数据的shape,因此,Sequential的第一层需要接受一个关于输入数据shape的参数,后面的各个层则可以自动的推导出中间数据的shape,因此不需要为每个层都指定这个参数。有几种方法来为第一层指定输入数据的shape
领取专属 10元无门槛券
手把手带您无忧上云