摘要 现在的社会越来越发达,科学技术不断的在更新,在信号和模拟电路里面经常要用到调制与解调,而AM的调制与解调是最基本的,也是经常用到的。用AM调制与解调可以在电路里面实现很多功能,制造出很多有用又实惠的电子产品,为我们的生活带来便利。在我们日常生活中用的收音机就是采用了AM调制的方式,而且在军事和民用领域都有十分重要的研究课题。现用MATLAB中M文件实现本课程设计内容“基于MATLAB的AM调制解调实现”。在课程设计中,系统开发平台为Windows XP,MTALAB 2007,程序设计语言采用MATLAB 2007,程序运行平台为MATLAB 2007。通过MATLAB编写程序并加以调试能够实现AM的调制与调解,完成了课程设计的目标,并经过适当完善后,将可以在实际中应用。
现在的社会越来越发达,科学技术不断的在更新,在信号和模拟电路里面经常要用到调制与解调,而AM的调制与解调是最基本的,也是经常用到的。用AM调制与解调可以在电路里面实现很多功能,制造出很多有用又实惠的电子产品,为我们的生活带来便利。在我们日常生活中用的收音机就是采用了AM调制的方式,而且在军事和民用领域都有十分重要的研究课题。现用MATLAB中M文件实现本课程设计内容“基于MATLAB的AM调制解调实现”。在课程设计中,系统开发平台为Windows XP,MTALAB 2007,程序设计语言采用MATLAB 2007,程序运行平台为MATLAB 2007。通过MATLAB编写程序并加以调试能够实现AM的调制与调解,完成了课程设计的目标,并经过适当完善后,将可以在实际中应用。
1.什么是白噪声? 答:白噪声是指功率谱密度在整个频域内均匀分布的噪声。白噪声或白杂讯,是一种功率频谱密度为常数的随机信号或随机过程。换句话说,此信号在各个频段上的功率是一样的,由于白光是由各种频率(颜色)的单色光混合而成,因而此信号的这种具有平坦功率谱的性质被称作是“白色的”,此信号也因此被称作白噪声。相对的,其他不具有这一性质的噪声信号被称为有色噪声。 理想的白噪声具有无限带宽,因而其能量是无限大,这在现实世界是不可能存在的。实际上,我们常常将有限带宽的平整讯号视为白噪音,因为这让我们在数学分析上更加方便。然而,白噪声在数学处理上比较方便,因此它是系统分析的有力工具。一般,只要一个噪声过程所具有的频谱宽度远远大于它所作用系统的带宽,并且在该带宽中其频谱密度基本上可以作为常数来考虑,就可以把它作为白噪声来处理。例如,热噪声和散弹噪声在很宽的频率范围内具有均匀的功率谱密度,通常可以认为它们是白噪声。 高斯白噪声的概念——."白"指功率谱恒定;高斯指幅度取各种值时的概率p (x)是高斯函数 高斯噪声——n维分布都服从高斯分布的噪声 高斯分布——也称正态分布,又称常态分布。对于随机变量X,记为N(μ,σ2),分别为高斯分布的期望和方差。当有确定值时,p (x)也就确定了,特别当μ=0,σ2=1时,X的分布为标准正态分布。
IC技术圈期刊内容涵盖FPGA、前端、验证、后端、自动化、模拟、求职、管理等IC技术领域,欢迎阅读,欢迎投稿。
导读:近日,在知乎等社交网络上,有哈工大学生表示收到了正版软件取消激活的通知,而在与 MATLAB 开发公司 MathWorks 交涉之后,被告知由于美国政府实体名单的原因,相关授权已被中止。
近日,有哈工大学生表示收到了正版软件取消激活的通知,而在与 MATLAB 开发公司 MathWorks 交涉之后,被告知由于美国政府实体名单的原因,相关授权已被中止。目前,哈尔滨工业大学、哈尔滨工程大学的老师和学生们都无法使用 MATLAB。
信息论与编码实验报告 院系: 哈尔滨理工大学荣成校区 专业: 电子信息工程 学号: 姓名: 日期: 2015 年 6 月 16 日 香农编码 信息论与编码第三次实验报告 一……
数字频带信号通常也称为数字调制信号,其信号频谱通常是带通型的,适合于在带通型信道中传输。数字调制是将基带数字信号变换成适合带通型信道传输的一种信号处理方式,正如模拟通信中的一样,可以通过对基带信号的频谱搬移来适应信道特性,也到同样的目的可以采用频率调制、相位调制的方式来达到同样的目的。
clc;clearall;closeall;t0=[11];a=[12;34]t=t0;t(1,:)=t0’\an=10;fori=2:nt(i,:)=t(i-1,:)’\a;endt
Matlab 是一种强大的数学软件,广泛应用于工程、科学和金融等领域。它提供了各种工具箱和函数,可以用于数据分析、图像处理、机器学习等方面。在本文中,我将介绍 Matlab 软件的一些常用功能使用技巧,并结合实际案例进行举例讲解,帮助读者更好地掌握 Matlab 的使用技巧。
本文讲解了 OFDM 相关概念及原理,并通过 MATLAB 仿真模拟一个 OFDM 时域及频域波形图。
所谓频谱分析,又称为功率谱分析或者功率谱密度(Power Spectral Density, PSD)分析,实际就是通过一定方法求解信号的功率power随着频率变化曲线。笔者在这里对目前常用的频谱分析方法做一个总结,并重点介绍目前EEG分析中最常用的频谱分析方法,并给出相应的Matlab程序。
PS:笔者强烈建议诸位注册一个EETOP的账号,每天签到或者发贴、回贴就有积分了,里面的资源非常丰富,各种软件、资料都能找到。
1>、RAND:Uniformly distributed random numbers.
虽然说是”零基础“入门matlab,但是如果有其它编程语言基础的话,学起来自然会更轻松。
随机信号的功率谱分析是一种广泛使用的信号处理方法,能够辨识随机信号能量在频率域的分布,同时也是解决多种工程随机振动问题的主要途径之一.Matlab作为大型数学分析软件,得到了广泛应用,目前已推出7.x的版本.Matlab内建了功能强大的信号处理工具箱.psd函数是Matlab信号处理工具箱中自功率谱分析的主要内建函数.Matlab在其帮助文件中阐述psd函数时均将输出结果直接称为powerspectrumdensity,也即我们通常所定义的自功率谱.实际上经分析发现,工程随机振动中功率谱标准定义[1]与Matlab中psd函数算法有所区别,这一点Matlab的帮助文档没有给出清晰解释.因此在使用者如没有详细研究psd函数源程序就直接使用,极易导致概念混淆,得出错误的谱估计.本文详细对比了工程随机振动理论的功率谱定义与Matlab中psd函数计算功率谱的区别,并提出用修正的psd函数计算功率谱的方法,并以一组脉动风压作为随机信号,分别采用原始的psd函数与修正后的psd函数分别对其进行功率谱分析,对比了两者结果的差异,证实了本文提出的修正方法的有效性.1随机振动相关理论1.1傅立叶变换求功率谱理论上,平稳随机过程的自功率谱密度定义为其自相关函数的傅立叶变换:Sxx()=12p+-Rxx(t)eitdt(1)其中,S(xx)()为随机信号x(t)的自功率谱密度,Rxx(t)为x(t)的自相关函数.工程随机振动中的随机过程一般都是平稳各态历经的,且采样信号样本长度是有限的,因此在实用上我们采用更为有效的计算功率谱的方法,即由时域信号x(t)构造一个截尾函数,如式(2)所示:xT(t)=x(t),0tT0,其他(2)其中,t为采样时刻,T为采样时长,x(t)为t时刻的时域信号值.由于xT(t)为有限长,故其傅立叶变换A(f,T)以及对应的逆变换存在,分别如式(3)、(4)所示:A(f,T)=+-xT(t)e-i2pftdt(3)xT(t)=+-A(f,T)ei2pftdt(4)由于所考虑过程是各态历经的,可以证明:Sxx(f)=limT1TA(f,T)2(5)在实际应用中,式(5)是作功率谱计算的常用方法.1.2功率谱分析中的加窗和平滑处理在工程实际中,为了降低工程随机信号的误差,一般对谱估计需要进行平滑处理.具体做法为:将时域信号{x(t)}分为n段:{x1(t)},{x2(t)},…,{xn-1(t)},{xn(t)},对每段按照式(5)求功率谱Sxixi(f),原样本的功率谱可由式(6)求得:Sxx(f)=1nni=1Sxixi(f)(6)如取一样本点为20480的样本进行分析,将样本分割为20段进行分析,每段样本点数为1024.将每段1024个样本点按照式(5)的方法分别计算功率谱后求平均,即可得到经过平滑处理的原样本的功率谱,这样计算出的平滑谱误差比直接计算要降低很多.另一方面,由于实际工程中随机信号的采样长度是有限的,即采样信号相当于原始信号的截断,即相当于用高度为1,长度为T的矩形时间窗函数乘以原信号,导致窗外信息完全丢失,引起信息损失.时域的这种信号损失将会导致频域内增加一些附加频率分量,给傅立叶变换带来泄漏误差.构造一些特殊的窗函数进行信号加窗处理可以弥补这种误差,即构造特殊的窗函数{u(t)},用{u(t)}去乘以原数据,对{x(t)u(t)}作傅立叶变换可以减少泄漏:Aw(f,T)=+-u(t)xT(t)e-i2pftdt(7)其中,Aw(f,T)为加窗后的傅立叶变换.u(t)xT(t)实际上是对数据进行不等加权修改其结果会使计算出
调制与解调是通讯中非常常见的技术,其实在微弱信号采集中也会用到此技术,那么调制与解调究竟是怎么一回事呢?
一些相关知识: 1、什么是中心极限定理(Central Limit Theorem) 中心极限定理指的是给定一个任意分布的总体。我每次从这些总体中随机抽取 n 个抽样,一共抽 m 次。 然后把这 m 组抽样分别求出平均值。 这些平均值的分布接近正态分布。 2、matlab求均值 Matlab函数:mean X=[1,2,3] mean(X)=2 3、matlab求方差 Matlab 函数:var X=[1,2,3,4] var(X)=1.6667 4、生成[-1,1]的均匀分布随机数 unifrnd (-1,1,1,n) 注:第三个1表示行,n表示列 5、随机抽样 x(1000)为一数组 b=x(randperm(100));%抽样100组 6、正态分布 [muhat,sigmahat,muci,sigmaci]=normfit(b,0.05); 7、条件检验 [h,s] = kstest(b, [b,F], alpha); 注意 :b,F必须为两列,故b需要转置 即b=b‘ 返回h=0表示接受假设,h=1表示拒绝假设 更多检验函数可以参考 假设检验
如下所示为一方阵 在 matlab 输入矩阵: A = [1 2 4; 407 9 1 3]; 2. 2 查阅 matlab help 可以知道,利用 eig 函数可以快速求解矩阵的特征值与特 征……
版权声明:本文为博主原创文章,转载请注明出处。 https://blog.csdn.net/u011054333/article/details/78986139
前面对 OFDM 的学习及了解还是比较浅显的,例如没有考虑到其中涉及的技术,例如保护间隔、信道编码、扩频、导频相关技术,本文通过学习这些技术,并进行 OFDM 的完整仿真过程。
有关 OFDM 相关理论知识及仿真参考我之前写过的博客:OFDM原理及MATLAB仿真
matlab里和随机数有关的函数: (1) rand:产生均值为0.5、幅度在0~1之间的伪随机数。 (2) randn:产生均值为0、方差为1的高斯白噪声。 (3) randperm(n):产生1到n的均匀分布随机序列。 (4) normrnd(a,b,c,d):产生均值为a、方差为b大小为cXd的 随机矩阵。
混频即两个不同频率之间的混合,得到第三个频率。数字混频器的设计也是FPGA数字信号处理中基础入门的设计之一,混频便是两个信号相乘得它们的和频率和差频率。数字混频在通信的调制、解调、DUC(数字上变频)、DDC(数字下变频)等系统中广泛应用。通常把其中一个信号称为本振信号(local oscillator),另一个信号称为混频器的输入信号。
前两次文章有读者私信说Matlab初学,基础较差,本次分享一下Matlab的基础内容,熟练者可以跳过本文,后续的文章也会在文后加上一些基础内容分享。
大家好,又见面了,我是你们的朋友全栈君。 matlab中length函数 length(x)在matlab中是什么意思?小编能记住你的一点一滴,你却忘了小编的一丝一毫。 if length(h)>1
本文为matlab自学笔记的一部分,之所以学习matlab是因为其真的是人工智能无论是神经网络还是智能计算中日常使用的,非常重要的软件。也许最近其带来的一些负面消息对国内各个高校和业界影响很大。但是我们作为技术人员,更是要奋发努力,拼搏上进,学好技术,才能师夷长技以制夷,为中华之崛起而读书!
【导读】主题链路知识是我们专知的核心功能之一,为用户提供AI领域系统性的知识学习服务,一站式学习人工智能的知识,包含人工智能( 机器学习、自然语言处理、计算机视觉等)、大数据、编程语言、系统架构。使用请访问专知 进行主题搜索查看 - 桌面电脑访问www.zhuanzhi.ai, 手机端访问www.zhuanzhi.ai 或关注微信公众号后台回复" 专知"进入专知,搜索主题查看。今天给大家继续介绍我们独家整理的机器学习——马尔科夫链蒙特卡洛采样(MCMC)方法。 上一次我们详细介绍了贝叶斯参数估计,里面我们
最近写文章需要用到fmincon函数做优化,于是抽空学习一下;按照惯例,继续开个博文记录一下学习的过程
DDS(Direct Digital Synthesis)直接数字频率合成技术由USA J.Tierncy首先提出。它是一种以数字信号处理理论为基础,从相位概念出发直接合成所需波形的一种新的全数字技术的频率合成方法。DDS主要出现在数字混频系统中。在数字混频中,通过DDS产生正交的本地振荡信号即正、余弦信号与输入信号相乘实现频谱搬移,如通信系统的调制、解调。目前FPGA实现DDS有三种途径:基于IIR滤波器的实现方法、基于查找表LUT的实现方法以及基于CORDIC算法的实现方法。其中采用LUT的方法较为通用且比较容易实现。
第一步:首先教给大家如何创建数组,MATLAB创建数组的方法比较简单,我们在MATLAB中输入如下代码:x=[2 4 6 8 10]
3.已知信号为编辑,用MATLAB编程实现该信号经冲激脉冲,抽样得到的抽样信号fs(t)及其频谱。令参数E=5,τ=0.5,采用抽样间隔
以上是在MATLAB中优化大型数据集时可能遇到的问题,对于每个问题,需要根据具体情况选择合适的解决方案。
这两天读完《利用Python进行数据分析》 这本书的第4章:NumPy 基础:数组和矢量计算 后,在进行下一步阅读高级应用前,先整理本章内容,做个笔记备查,也好加深印象。在往下看前请确保你已经安装了NumPy 库,并且已经使用 import numpy as np 加载numpy库。如果 还没有安装,那么可以在cmd(windows下)中使用 pip install numpy 命令安装,ubuntu下也可以使用 sudo apt-get install python-numpy 命令安装。
根据文章内容,撰写摘要总结如下:本文主要介绍了NumPy库中的一些常用函数,包括数组操作、数组索引、数组形状、数组广播、数组比较以及线性代数等方面的内容。其中,数组操作和数组索引是NumPy库中最基本和最重要的两个概念,通过这些函数,我们可以方便地对数组进行各种操作和运算。另外,数组形状、数组广播、数组比较以及线性代数等方面的内容也是NumPy库中比较重要的概念,这些函数可以帮助我们更好地理解和操作数组。
科学计算依赖于执行用不同编程语言编码的计算机算法。计算机视觉就是这样一个跨学科的科学领域,通常简称为CV。计算机视觉被用来开发能够自动完成诸如获取、处理、分析和理解数字图像等任务的技术。它也被用来从现实世界中提取高维数据来产生符号信息。简单地说,计算机视觉使计算机能够像人类一样看到、理解和处理图像和视频。
matlab中的向量是只有一行元素的数组,向量中的单个项通常称为元素。Matlab中的向量索引值从1开始,而不是从0开始。
之前的博客:OFDM深入学习及MATLAB仿真 中有对交织的概念进行讲解,但讲解还是比较浅显,且仿真实现时并没有加入交织及解交织流程,这里单独对交织的原理做一个讲解并在原来代码的基础上加入交织及解交织流程,再去对比一下加入后和加入前的误比特率。
今天刚好来看机器学习,结果就踩到了这个坑。本来目标是看PyTorch的,结果由于一份教程的开头有一句“本教程默认已有NumPy基础”而跑去看NumPy了。喜闻乐见,其实并没有看NumPy的必要,但是毕竟也简单看完记了不少笔记,就发出来算了。
发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/153010.html原文链接:https://javaforall.cn
MATLAB 是“matrix laboratory”的缩写形式。MATLAB® 主要用于处理整个的矩阵和数组,而其他编程语言大多逐个处理数值。矩阵是指通常用来进行线性代数运算的二维数组。
今天给大侠带来基于FPGA的扩频系统设计,由于篇幅较长,分三篇。今天带来第一篇,中篇。话不多说,上货。
MATLAB以矩阵作为数据操作的基本单位,这使得矩阵运算变得非常简捷、方便、高效。矩阵是由m×n个数av (i=1,2,…,m; j = 1,2,…,n)排成的m行n列数表,记成:
如果想要使用 cos 函数的用法 , 假如是初次使用 , 不熟悉相关函数用法 , 可以到 matlab 文档中查询相关函数的用法 ;
http://blog.csdn.net/pipisorry/article/details/39087583
两个月在做数字信号处理方面的工作,也是从一个小白刚刚起步,这两天才把fir滤波器给跑通,写文记录下。希望大家欢迎,多多支持。这篇文章写得辛苦,仅仅Word文件就有21页,写了足足两天时间,修修改改。希望大家多多支持,点赞,转发,打赏。
Matlab提供了丰富的绘图函数,比如ez**系类的简易绘图函数,surf、mesh系类的数值绘图函数等几十个。另外其他专业工具箱也提供了专业绘图函数,这些值得大家深入学习好久。
1、MATLAB中图象数据的读取 A、 imread imread函数用于读入各种图象文件,其一般的用法为 [X,MAP]=imread(‘filename’,‘fmt’) 其中,X,MAP分别为读出的图象数据和颜色表数据,fmt为图象的格式,filename为读取的图象文件(可
领取专属 10元无门槛券
手把手带您无忧上云