今天,老湿刷着朋友圈,被一条消息震精了,11.11前夕,有人拍到有貌似钢铁匣样的大量神秘箱体。 老湿最近变身《白夜追凶》萌妹,必须安排外围狗仔队尾随这些神秘箱体,一定有神转折出现!...外面下起了秋雨,狗仔队表示你的箱包,让我走的好缓慢 11.11京东全球好物节,老湿也是操碎了心。看来真是壕多壕多壕多壕多的服务器,轻轻松松价值几个亿。...我们把一颗心献给京东 此文献给在11.11京东全球好物节中,每一位京东技术的研发人,感谢你们的默默奉献,让我们的生活更加美好!
正文之前 好久没弄C++了,上学期颓废了半学期,这学期开学就搞课程设计快疯了。待会要考试CSP,所以弄点代码储备,待会到了考场说不定能省点功夫! 正文 #in...
用 Objective-C 实现几种基本的排序算法,并把排序的过程图形化显示。其实算法还是挺有趣的 ^ ^. 选择排序 冒泡排序 插入排序 快速排序 选择排序 以升序为例。...因我们不讨论三向切分的快排优化算法,所以这里答案是:不理它。 随着一趟一趟的排序,它们会慢慢被更小的元素往后挤,被更大的元素往前挤,最后的结果就是它们都会和枢轴一起移到了中间位置。...结果很明显,当某个算法所需要进行的比较操作越少时,它排序就会越快(根据上面四张图的比较,毫无疑问快排所进行的比较操作是最少啦~)。 那么如何模拟出比较操作的耗时时间呢?
01 — Dijkstra算法的理论部分 关于Dijkstra算法的原理部分,请参考之前的推送: 图算法|Dijkstra最短路径算法 Dijkstra算法总结如下: 1....此算法是计算从入度为0的起始点开始的单源最短路径算法,它能计算从源点到图中任何一点的最短路径,假定起始点为A 2.
介绍 交叉购买分析,有时也叫购物车分析,一般用于判断同时购买某几种产品组合的用户偏好,以便向用户推荐产品。在PowerBI中当然也可以完成类似的分析。...我们需要计算:在选择一个基准产品类别A时,观察购买A而且同时购买B的用户量,以及占比。 模型 基本模型并没有什么需要特别介绍之处。...那么,购买A类产品同时购买B类产品的客户数为: 这里分成两步完成计算,首先先计算买过A类产品的客户(集合),然后用该集合作为筛选器参数来计算购买过B类产品的客户数。...AB类客户的占比时,是相对于购买A类产品的客户来计算呢,还是相对于购买B类产品的客户来计算。...推广 本例从简单的场景出发,解释了交叉购买分析的原理,这个原理首先可以直接应用于分析购买某种特定产品后可能的推荐算法。
但是在购买点券的过程中发现这样一个问题 ? 我竟然不能够随心所欲的购买点券数量,只能按照腾讯规定的数量购买点券。这应该是腾讯为了刺激用户消费所设置的规则。...贪心算法 这个时候,可能大都会想到两种算法:动态规划算法和贪心算法。 这里容我偷个懒,采用简单易行的贪心算法。至于动态规划算法的解法感兴趣的小伙伴们可以自己试试看。...至于贪心算法的核心理念: 每一步都采取最优的做法。用专业术语来讲就是:每一步都选择局部最优解,进而希望最终获得一个全局最优解。...int money = getMoney(); // 根据贪心算法得到如何购买的点券集合 List buy = getHowMoney...buy.forEach(b->{// 遍历点券集合输出即可 System.out.print(b + " "); }); } /** * 根据贪心算法求出购买点券的策略
本文是其中第二篇,介绍了图算法。...前一篇文章介绍了图的主要种类以及描述一个图的基本特性。现在我们更加详细地介绍图分析/算法以及分析图的不同方式。...一 寻路和图搜索算法 寻路算法是通过最小化跳(hop)的数量来寻找两个节点之间的最短路径。 搜索算法不是给出最短路径,而是根据图的相邻情况或深度来探索图。这可用于信息检索。 1....和 SCC 一样,并查集通常用在分析的早期阶段,以理解图的结构。 并查集是一个预处理步骤,为了理解图的结构,在任何算法之前都是必需的。...四 总结 现在我们已经介绍了图的基础知识、图的主要类型、不同的图算法和它们使用 networkx 的 Python 实现。
) > library(affycoretools) > data("CLLbatch") > data("disease") > CLLgcrma<-gcrma(CLLbatch) #使用gcrma算法预处理数据...通过采用两个主成分构建分类图,可以看出稳定组(矩形)和恶化组(菱形)根本不能很好分开,在主成分分析时,考虑两个组成分的代表性以及累计贡献率,若低于60%,需要采用多维尺度分析
前言:学习图的遍历算法之前,需要先了解一下图的存储方式(这里只以无向图作为讨论了)。
图的表示方式 图是由一系列点和边的集合构成的,一般有邻接矩阵和邻接表两种表示方式,c/c++可以看我的这篇文章:搜索(1) 这篇文章主要讲java语言中图的相关算法。... 图的拓扑排序以下图来举例,假设你要学课程A,但是课程A有先导课,必须上完先导课才能上A,因此你必须先上BCD,但是由于BD也有先导课K,所以必须先上K。... 图的最小生成树算法用于无向图,只选择图中的某些边,达到整体边的权重加起来是最小的,并且各个点之间是连通的,连通的意思是假设[1,2]之间有条边,[2,3]之间有条边,那么[1,3]之间就是连通的,图的最小生成树算法有两个...,分别是K算法和P算法,他俩产生的结果都是一样的,只不过决策的过程不一样。...K算法 ? 以上面的图为例,K算法的思想是以边进行考虑,优先选择小权重的边。
2.加入购物车;3.购物车删除;4.下单;5.关注;6.点击 cate 品类ID 脱敏 brand 品牌ID 脱敏 二 任务描述: 参赛者需要使用京东多个品类下商品的历史销售数据,构建算法模型...对于训练集中出现的每一个用户,参赛者的模型需要预测该用户在未来5天内是否购买目标品类下的商品以及所购买商品的SKU_ID。评测算法将针对参赛者提交的预测结果,计算加权得分。...;然后通过ui_record_in_batch_data方法,拿到用户的行为序列(不只是购买行为);more_than_a_day方法:最后购买日期:行为序列中,购买类型行为的最后日期(last_buy_day...负样本:有过浏览等行为,但最终没有购买行为的用户记录 初步的目标,就是从有非购买行为,且有购买行为的用户中,分析出其中隐藏的规律,并利用这个规律,对其他有行为的用户进行购买行为的预测 上面为热心参赛者的代码和流程...负样本:有过浏览等行为,但最终没有购买行为的用户记录 初步的目标,就是从有非购买行为,且有购买行为的用户中,分析出其中隐藏的规律,并利用这个规律,对其他有行为的用户进行购买行为的预测。
比如,从A到D的最短路径,通过肉眼观察可以得出为如下,A->C->D,距离等于3+3=6,其中A->C边上的数值3称为权重,又知这是无向图,从C到A的权重也为3。 ?...02 — Dijkstra算法求单源最短路径 这个算法首先设置了两个集合,S集合和V集合。S集合初始只有源顶点即顶点A,V集合初始为除了源顶点以外的其他所有顶点,如下图所示: ?...设置一个从A到各顶点的缓存字典,作为算法的输出,初始时,统一设置为 -1, ?...选取最小距离,即B进入S集合,并且,Dijkstra算法要和dist字典中A->B 距离做一次比较, 如果dist(A->B)!...以上分析就是Dijkstra算法的基本思想,直到集合V的元素个数为0为止,最终的dist字典如下: ? 03 — Dijkstra算法总结 算法的基本思路: 1. 初始化两个集合,S集合和V集合。
一、推荐的概述 在推荐系统中,通常是要向用户推荐商品,如在购物网站中,需要根据用户的历史购买行为,向用户推荐一些实际的商品;如在视频网站中,推荐的则是不同的视频;如在社交网站中,推荐的可能是用户等等...(图片来自参考文献) 在上图中,左侧的A,B,C表示的是三个用户,右侧的a,b,c,d表示的是四个商品,中间的连线表示用户与商品之间有过行为,或者是购买或者是打分,推荐的目的是从商品列表中向指定的用户推荐用户未行为过的商品...推荐的算法有很多,包括协同过滤(基于用户的协同过滤和基于物品的协同过滤)以及其他的一些基于模型的推荐算法。...二、基于图的推荐算法PersonalRank算法 1、PersonalRank算法简介 在协同过滤中,主要是将上述的用户和商品之间的关系表示成一个二维的矩阵(用户商品矩阵)。...而在基于图的推荐算法中,将上述的关系表示成二部图的形式,为用户A推荐商品,实际上就是计算用户A对所有商品的感兴趣程度。
一、推荐的概述 在推荐系统中,通常是要向用户推荐商品,如在购物网站中,需要根据用户的历史购买行为,向用户推荐一些实际的商品;如在视频网站中,推荐的则是不同的视频;如在社交网站中,推荐的可能是用户等等,无论是真实的商品...(图片来自参考文献) 在上图中,左侧的A,B,C表示的是三个用户,右侧的a,b,c,d表示的是四个商品,中间的连线表示用户与商品之间有过行为,或者是购买或者是打分,推荐的目的是从商品列表中向指定的用户推荐用户未行为过的商品...推荐的算法有很多,包括协同过滤(基于用户的协同过滤和基于物品的协同过滤)以及其他的一些基于模型的推荐算法。...二、基于图的推荐算法PersonalRank算法 1、PersonalRank算法简介 在协同过滤中,主要是将上述的用户和商品之间的关系表示成一个二维的矩阵(用户商品矩阵)。...而在基于图的推荐算法中,将上述的关系表示成二部图的形式,为用户A推荐商品,实际上就是计算用户A对所有商品的感兴趣程度。
p=26999 Apriori 算法是一个相当新的算法,由 Agrawal 和 Srikant 于 1994 年提出。它是一种用于频繁项集挖掘的算法,允许公司理解和组织向上销售和交叉销售活动。...每行代表购买了所列书籍的唯一客户。 目标是了解基本购买行为,向客户推荐的其他书籍是什么——这样它可以提高公司的收入以及对所提供服务的整体满意度。...我们以网络图结束,该图展示了置信度高于 55% 的关系。...包括删除索引 dt2 = pd.DataFrame dt2 = dt2.reset_index(drop = True) dt2.nunique() # 总共有4,999本独特的书籍 #数据集中购买最多的前...10本书 top0 = pd.DataFrame(dt2.value_counts(sort= True, ascending=False).head(10)) to10 # 创建条形图
向AI转型的程序员都关注了这个号 机器学习AI算法工程 公众号:datayx 期研究了一下以图搜图这个炫酷的东西。百度和谷歌都有提供以图搜图的功能,有兴趣可以找一下。当然,不是很深入。...这个问题也是困扰了我,在偶然的机会,看到哈希感知算法。这个分两种,一种是基本的均值哈希感知算法(dHash),一种是余弦变换哈希感知算法(pHash)。dHash是我自己命名的,为了和pHash区分。...大致算法就是这样,汉明距离的代码我没给出,这个比较简单。一般都是在数据库里面进行计算,得到比较小的那些图片感知哈希值。 当然,实际应用中很少用这种算法,因为这种算法比较敏感。...在dHash算法中,它们是不同的。而我们肉眼可以看出其实是一样的。前面说过dHash算法比较较真、比较敏感。若要处理一定程度的变形,得要调整一下这个算法。...pHash算法就是基于dHash算法调整而来的,用第一次计算得到的值进行余弦变换。所以命名为余弦哈希感知算法。它可以识别变形程度在25%以内的图片。
关于Map数据类型可以访问,算法:列表List、映射Map、集合Set-理论 public class TreeMap extends AbstractMap implements...这个算法直接看容易懵,需要按图服用。下面给出每种情况调用的图例。 情况1,父亲节点在祖父节点左边,且叔叔节点为红色。 ?...fixAfterInsertion方法逻辑顺序图 ? 引入图 在树的基础上,我们知道当前节点中有多个指向下一节点的引用,假如还存在零个及以上指向上一节点(或者根节点)的引用,我们称之为图。...图(Graph)是由顶点的有穷非空集合和顶点之间边的集合组成,通常表示为:G(V,E),其中,G表示一个图,V是图G中顶点的集合,E是图G中边的集合。 ?...JDK源码中好像并没有图这种数据结构。 下面给出几个Java实现图的博文。 Java数据结构和算法-图 数据结构(Java随笔)—图
正文之前 好久没弄C++了,上学期颓废了半学期,这学期开学就搞课程设计快疯了。待会要考试CSP,所以弄点代码储备,待会到了考场说不定能省点功夫! 正文 #inc...
大家好,今天不写代码,改为教大家画画,不过不是教素描或者油画之类的,而是画流程图。 在画流程图之前,先简单介绍下算法的概念,理解即可。然后通过画流程图来复习下前面学过的几种程序控制结构。...根据这些方法和步骤来编写计算机程序代码,这些具体的步骤和方法就是解决问题的算法。 根据算法,选择一种编程语言来编写可以完成任务的代码,就是编制程序。...对于复杂的应用程序,我们在开始编写代码之前,都应先设计起算法。...二、流 程 图 流程图就是一种描述算法的方式,相比于纯文字的描述,可以把解决问题的思路以更清晰、直观的方式展现出来,有助于更好的设计程序过程。...那么首先来看一下常用的流程图符号(在excel中“插入”选项卡,插入“形状”,流程图部分都有下列常用的符号。) ? 下面就通过流程图来复习下学习过的控制程序结构。
图的最短算法 从起点开始访问所有路径,可以到达终点的有多条地址,其中路径权值最小的为最短路径。...最短路径算法有深度优先遍历、广度优先遍历、Bellman-Ford算法、弗洛伊德算法、SPFA(Shortest Path Faster Algorithm)算法和迪杰斯特拉算法等。...void createGraph(AdjListGraph& G) { cout << "请输入该图的顶点数以及边数" << endl; cin >> G.vex >> G.edge; cout...first;//头插法-类似于hashtable中的插入数据 temp->weight = weight; G.adjlist[i1].first = temp; } } } //图的最短路径算法...;//路径回退 } temp = temp->next; } } int main(void) { AdjListGraph G; //初始化 initGraph(G); //创建图
领取专属 10元无门槛券
手把手带您无忧上云