今天和大家聊聊并发。 虽然搞了多年 Java,可许多朋友一提到“并发”就头疼: 为什么我已经学习了很多相关技术,可还是搞不定并发编程? 小公司根本遇不到并发问题,高并发经验该怎么积累?平时该怎么学习? 昨天面试又卡在并发问题上了,并发编程难道已经成为大厂必备的敲门砖了吗? 有这些困惑很正常,因为并发编程是 Java 语言中最为晦涩的知识点,它涉及操作系统、内存、CPU、编程语言等多方面的基础能力,而这些知识点看上去非常的零散、独立,可实则关联性又比较强,更为考验一个程序员的内功。 并发编程的优势是
在数字化转型浪潮中,如何存储和利用好数据,是企业面临的首要问题。相比于传统互联网全面拥抱云,产业互联网在数字化转型过程中,通常第一步是利用云存储来归档数据。
2022年,搜狐智能媒体完成了迁移腾讯云的弹性计算项目,其中大数据业务整体都迁移了腾讯云,上云之后的整体服务性能、成本控制、运维效率等方面都取得了不错的效果,达到了预期的降本增效目标。
企业降本增效是越来越热门的话题,除去较为粗暴的“毕业”之外,企业还可以在许多地方下功夫,例如降低大数据成本、营销成本、运营成本等等。在 ArchSummit 全球架构师峰会深圳站上,我们邀请了货拉拉大数据架构负责人王海华,他为我们分享了《货拉拉基于混合云的大数据成本管控体系建设实践》,本文为其演讲整理,期待你可以有所收获。 大家好,我是王海华,货拉拉基础架构负责人,我将从以下几方面展开分享。首先是背景与挑战;其次是大数据成本管理体系;接着是存储成本优化和计算成本优化技术细节;最后是总结与展望。 背景与挑
某游戏公司开发了个游戏APP,该公司在APP中会发布一些游戏场景、游戏角色、装备、精美皮肤等内容,玩家在线娱乐,产生充值购买等行为。 业务的构建涉及到几个端:
一、概述 数据一致性是指关联数据之间的逻辑关系是否正确和完整。问题可以理解为应用程序自己认为的数据状态与最终写入到磁盘中的数据状态是否一致。比如一个事务操作,实际发出了五个写操作,当系统把前面三个写操作的数据成功写入磁盘以后,系统突然故障,导致后面两个写操作没有写入磁盘中。此时应用程序和磁盘对数据状态的理解就不一致。当系统恢复以后,数据库程序重新从磁盘中读出数据时,就会发现数据再逻辑上存在问题,数据不可用。 二、Cache引起的数据一致性问题 引起数据一致性问题的一个主要原因是位于数据I/O路径上的各种Cache或Buffer(包括数据库Cache、文件系统Cache、存储控制器 Cache、磁盘Cache等)。由于不同系统模块处理数据IO的速度是存在差异的,所以就需要添加Cache来缓存IO操作,适配不同模块的处理速度。这些Cache在提高系统处理性能的同时,也可能会“滞留”IO操作,带来一些负面影响。如果在系统发生故障时,仍有部分IO“滞留”在IO操作中,真正写到磁盘中的数据就会少于应用程序实际写出的数据,造成数据的不一致。当系统恢复时,直接从硬盘中读出的数据可能存在逻辑错误,导致应用无法启动。尽管一些数据库系统(如Oracle、DB2)可以根据redo日志重新生成数据,修复逻辑错误,但这个过程是非常耗时的,而且也不一定每次都能成功。对于一些功能相对较弱的数据库(如SQL Server),这个问题就更加严重了。 解决此类文件的方法有两个,关闭Cache或创建快照(Snapshot)。尽管关闭Cache会导致系统处理性能的下降,但在有些应用中,这却是唯一的选择。比如一些高等级的容灾方案中(RPO为0),都是利用同步镜像技术在生产中心和灾备中心之间实时同步复制数据。由于数据是实时复制的,所以就必须要关闭Cache。 快照的目的是为数据卷创建一个在特定时间点的状态视图,通过这个视图只可以看到数据卷在创建时刻的数据,在此时间点之后源数据卷的更新(有新的数据写入),不会反映在快照视图中。利用这个快照视图,就可以做数据的备份或复制。那么快照视图的数据一致性是如何保证的呢?这涉及到多个实体(存储控制器和安装在主机上的快照代理)和一系列的动作。典型的操作流程是:存储控制器要为某个数据卷创建快照时,通知快照代理;快照代理收到通知后,通知应用程序暂停IO操作(进入 backup模式),并flush数据库和文件系统中的Cache,之后给存储控制器返回消息,指示已可以创建快照;存储控制器收到快照代理返回的指示消息后,立即创建快照视图,并通知快照代理快照创建完毕;快照代理通知应用程序正常运行。由于应用程序暂停了IO操作,并且flush了主机中的 Cache,所以也就保证了数据的一致性。 创建快照是对应用性能是有一定的影响的(以Oracle数据库为例,进入Backup模式大约需要2分钟,退出Backup模式需要1分钟,再加上通信所需时间,一次快照需要约4分钟的时间),所以快照的创建不能太频繁。 三、时间不同步引起的数据一致性问题 引起数据不一致性的另外一个主要原因是对相关联的多个数据卷进行操作(如备份、复制)时,在时间上不同步。比如一个Oracle数据库的数据库文件、 Redo日志文件、归档日志文件分别存储在不同的卷上,如果在备份或复制的时候未考虑几个卷之间的关联,分别对一个个卷进行操作,那么备份或复制生成的卷就一定存在数据不一致问题。 此类问题的解决方法就是建立“卷组(Volume Group)”,把多个关联数据卷组成一个组,在创建快照时同时为组内多个卷建立快照,保证这些快照在时间上的同步。之后再利用卷的快照视图进行复制或备份等操作,由此产生的数据副本就严格保证了数据的一致性。 四、文件共享中的数据一致性问题 通常所采用的双机或集群方式实现同构和异构服务器、工作站与存储设备间的数据共享,主要应用在非线性编辑等需要多台主机同时对一个磁盘分区进行读写。
云服务器、云数据库特惠,服务更稳,速度更快,价格更优 前往地址> 云服务器年付3折起 所有机型免费分配公网IP,50G高性能云硬盘(系统盘) 。 英特尔Ⓡ至强处理器 CPU负载无限制,利用率最高为100% 搭配网络增强,包转发能力最高可达30w 个人建站,轻量APP,企业用户等各应用场景均可适用 云数据库年付3折起 MySQL高可用版 提供备份,恢复,监控,数据迁移等产品功能 双机热备,自动容灾 采用高性能SSD硬盘 按需使用,弹性扩展 Redis 提供备份,恢复,监控,按需升级等产品功能 适用所用高
时光如白驹过隙,坐在时代的列车里,我们一路向前;近三十年来,无数事物在车窗前掠影而过,一度流行,又一度黯淡。磁带,就是一个时代的符号。彼时,磁带因其低廉、可靠及易用等特性,一度成为音乐最主流的载体,将流行音乐传遍大街小巷。后来,随着 CD 和 MP3走进大众视野,磁带逐步退出历史舞台。如今,磁带作为音乐载体早被时代淘汰.....但磁带作为存储载体,近几十年却从未过时:在冷数据场景,磁带存储凭借其极低的成本和极长的寿命,在企业存储市场始终占有一席之地。今天的故事就此展开,来聊聊腾讯的深度归档存储与磁带的那些事。欢迎阅读~
某广电客户遇到技术挑战:如何能及时编辑已归档的媒资素材? COS归档支持高带宽及时回热,问题似乎迎刃而解,但深层问题暴露出来,客户编辑软件仅支持文件接口语义,不支持对象接口语义,不能直接读写COS的数据。 该需求“COS支持文件接口语义”有代表性。对象接口语义是互联网新兴技术,很多线下应用暂不支持对象接口语义;另外,对象接口语义面向互联网分发场景所设计,缺失线下文件接口语义的稳定低时延、强一致性、稀疏写等功能。 ---- COS通过存储网关CSG支持文件接口语义 腾讯云对象存储COS团队收到客
大家都知道IT圈有个非常著名的曲线图,就是Gartner的新兴技术成熟度曲线(Hype Cycle),昨天看了一下Gartner 2016的存储成熟曲线图,今天给大家简单聊聊,多多指教。:) 废话不多说,直接上图
云计算似乎是归档存储数据的理想场所。它提供了按需付费的增长模式,并使组织能够缩减其内部存储空间。但问题是,三大供应商(亚马逊AWS,微软Azure和谷歌计算)并没有提供交钥匙归档的服务体验。用户很难获得数据。在某种程度上,这是应该的。这些服务的重点是提供基础架构即服务,而不是解决方案即服务。问题是用户IT部门需要一个解决方案。 内部部署的归档问题 归档存储市场中的每个供应商都可以创建一个投资回报方案,显示其实施后数月的归档支付情况。问题是所有这些供应商都有些犯了模糊数学的错误。典型的投资回报率情况是
我犹豫了一段时间,主要是没想到私有存储和阿里云盘的区别,感觉阿里云盘够用了。后来突然想到之前家人分享照片,直接发微信群里,无法持久化。另外发朋友圈也不利于家庭内部集中分享的目的。私有存储能解决这些问题,可以分配多个用户,且提供公共空间。
随着计算力的不断提升和智能算法的快速演进,以及云计算、物联网和人工智能与传统产业更加密集的渗透,如今的世界正在加速进入一个全新的数据时代。
传统的聚合,当文档数据量非常大时进行多重聚合、嵌套聚合的性能会受到很大影响。因为聚合操作需要搜索整个索引,并处理大量数据,这会导致查询变慢,甚至可能使 Elasticsearch 集群崩溃。
2016年初,京东在印尼正式落地了第一个海外本土站点;今年11.11,京东印尼站当天单量同比增长845%,连续三年保持超高速增长。
51CTO博客首席体验官,专注于大前端技术的分享,包括Flutter,小程序,安卓,VUE,JavaScript。
云点播VOD 你问我答 第10季 本期共解答10个问题 Q1:云点播视频播放失败如何排查? 视频播放失败有多种原因,定位问题的基本思路是: 配置网络抓包,查看网络请求情况。 查看浏览器控制台报错情况。 检查视频格式,使用的浏览器是否支持播放。 部分用户的原视频存在问题,可能导致视频上传后无法进行播放,建议用户在云点播进行一次转码后,使用转码后链接进行播放。 注意: 编码不是H.264编码的视频播放器无法播放,建议您转码为H.264编码的视频。 更多详情请参考[视频播放问题](https:
公共云存储是专为大规模多租户而设计,能为每个客户提供数据隔离、访问与安全性的服务。公共云存储的内容类型其范围包括,从静态非核心应用数据、需要可用的归档内容到数据备份以及灾难性恢复数据。内部或私有云存储在数据中心的专用基础设施上运行,因此,能完全满足安全性和性能这两个主要关注点,并在其他方面提供了与公共云存储一样的好处。公有云与私有云主要存在九大差别。 1)私有云计算可以让按需应用或者存储(或者两者兼有)同时存在。 2)私有云计算可以是基于因特网的,或者企业内部网的。 3)私有云计算是极容易扩展的。往往附加的
有时候我们看到了一个有趣的网站,想永久保存这个网站,即使这个网站关闭了,我们仍然想访问这个网站。针对这种需求,有形形色色的解决方案,比如我们可以将网站右键保存,用离线工具下载等等。今天我们介绍的是在腾讯云轻量服务器上搭建自己的专属网页档案馆archivebox,archivebox目前支持保存 HTML、JS、PDF、媒体等各种格式的资源,是非常强大的开源自托管网络归档方案。
如果将应用的所有数据简单地放在一台 MySQL 服务器实例上,就不用谈什么扩展性了。但是业务能稳定持续的增长,那么应用肯定会碰到性能瓶颈。
对于企业来说,数据保护是将大量数据存储在云端的关键原因。最终所有数据都需要备份和归档,很多IT组织将云计算视为本地存储的最具成本效益的替代方案。 这一策略的最大问题是,本地存储的大部分数据都在与云服务
最近开始上手一个大数据离线数仓项目。本篇博客先为大家进行一个总体的介绍,包括各个阶段的任务以及项目的简介,环境,需求等等…
业务背景 作业帮成立于2015年,一直致力于用科技手段助力教育普惠,运用人工智能、大数据等前沿技术,为学生、老师、家长提供更高效的学习、教育解决方案,智能硬件产品等。作为大数据中台架构团队,我们一直探索利用有限的资源,较低的开发维护成本、高时效的数据更新和查询,为业务团队提供基础支持。 问题&痛点 ODS层数据就绪时间晚,DWS/ADS等上层数据和业务报表构建时间少。 作业帮ODS层表大概有几千张,TP90就绪时间大概在4点30左右,不同业务团队因工作时间不同,看数时间会有些差异,总体上来说基本都要求数
数栈是云原生—站式数据中台PaaS,我们在github和gitee上有一个有趣的开源项目:FlinkX,FlinkX是一个基于Flink的批流统一的数据同步工具,既可以采集静态的数据,也可以采集实时变化的数据,是全域、异构、批流一体的数据同步引擎。大家喜欢的话请给我们点个star!star!star!
全球分布式云大会是分布式云技术和商业交流的旗舰级平台,2023全球分布式云大会·北京站将于6月28日-29日正式召开,本次大会以“云智筑基”为主题,探究人工智能(AI)在大模型全新的发展风口,构建新型泛在算力网络的趋势,如何利用分布式云、分布式数据库、分布式存储、边缘云等构建新型算力网络,打造更强大的数字经济价值引擎。
对数据备份有所了解的朋友应该都听说过“两地三中心”的备份模式,即热数据和备份数据处于同一城市,并且在异地再设立一个冷备份。虽然两地三中心的概念源自企业级解决方案,但这并不影响我们借鉴其理念用于规划私人 NAS 数据的备份。
Apache Kafka 发展至今,已经是一个很成熟的消息队列组件了,也是大数据生态圈中不可或缺的一员。Apache Kafka 社区非常的活跃,通过社区成员不断的贡献代码和迭代项目,使得 Apache Kafka 功能越发丰富、性能越发稳定,成为企业大数据技术架构解决方案中重要的一环。
字节跳动早期为了快速支持业务,对于电商流量数据采用Lambda的设计架构,由于当前电商流量数据随着建设的深入和精细化的运营,设计架构的弊端也愈发凸显。
现在业务系统设计中,存储设计扮演着至关重要的角色。随着数据量的爆炸性增长和业务需求的不断变化,如何高效、安全地存储和管理数据成为了每个业务系统设计必须面对的挑战。
大多数数据不是静态的。不,数据具有改变的生命,可能用于多种用途,并且可以在各处移动。因此,考虑组织中数据的生命周期是有意义的。
一、iOS数据持久化方式 (1)XML属性列表(plist)归档 (2)Preference(偏好设置),本质还是通过“plist”来存储数据, 但是使用更简单(无需关注文件、文件夹路径和名称) (3)NSKeyedArchiver归档(NSCoding),可以把任何对象, 直接保存为文件的方式。 (4)SQLite3,当非常大量的数据存储时使用 (5)Core Data,就是对SQLite的封装 关于bundle路径和sandbox沙河路径: (1)bundle路径:应用程序 (APP) 在手
移动端重点是移动端,支持IOS/Android系统,包括IM App,嵌入消息功能的瓜子App,未来还可能接入客服系统。
据艾瑞咨询的报道,2017 年中国家电行业,苏宁是最大的市场占有者。线上线下的组合,占据整个行业的 20.0%. 是京东(12.3%)和国美电器(7.5%)之和,而天猫已被拉入了第三阶梯,比较起来毫无竞争力。
快手的传统离线链路和很多公司是一致的,基于 Hive做离线分层数仓的建设。在入仓环节和层与层之间是基于 Spark 或者 Hive做清洗加工和计算。这个链路有以下四个痛点:
2、查看所想要下载的组件的版本信息,比如,要下载adminCenter组件,执行命令
有赞搜索中台作为有赞企业级搜索能力复用平台,在解决各个业务域搜索问题时是如何探索与实践的,这个过程中有哪些心得,本文与大家一起分享探讨下。
《一个海量在线用户即时通讯系统(IM)的完整设计》(以下称《完整设计》)这篇文章发出来之后有不少读者咨询问题,提出意见或建议。主要集中在模块拆分、协议、存储等方面。针对这些问题做个简单说明。
关于腾讯轻量与深度归档配合的文章很早就想写了,早期轻量的下行是超千兆的,但是因为前段时间腾讯云调整了入网带宽的策略,顿时感觉这个用法不太合适就搁置了。昨天的时候朋友给我发说对于轻量的入网策略变化了,国内区域入网从原来的 10Mbps 上升到了 100Mbps,于是把这个翻出来还是把它写完吧~
个性化推荐是随着移动互联网发展不断发展起来的,它是建立在海量数据挖掘基础上的一种高级商务智能平台,以帮助电子商务网站为其顾客购物提供完全个性化的决策支持和信息服务。有赞微商城使用个性化推荐系统,尤其是在关键节点增加推荐入口,进行场景化推荐,帮助商家进一步提高用户的付款转化率,最大化流量变现。
视频,照片,录音......诸如此类的文件在手机电脑里,永远是不断增多,不断占用的东西,每次空间告急时,都要花一大片时间去整理,删除照片释放这宝贵的空间,“这个删,这个删不删呢?可能以后要用......”,挑选照片还真是一个费时费力还费心的活。
当Oracle写数据文件遇到错误时,该如何应对呢?是离线文件还是崩溃实例?这个简单问题的技术变化跨度超过了20年。 自Oracle 11.2.0.2版本开始,一个新的隐含参数 - _datafile_write_errors_crash_instance 被引入到数据库中,通过这个参数名就可以了解到其含义:当发生数据文件写错误时,Crash数据库实例。 为什么要引入这个参数呢?这个参数后台解决的是什么问题呢?我在《数据安全警示录》一书上曾经写过多个案例,在归档模式下当发生文件(非SYSTEM文件)写错误
腾讯云数据中心的建设,是符合国际ISO标准,以及国内的可信云、信息安全等级保护三级标准,这为数据中心的稳定运行以及安全提供了可靠依据。
【12.5 - 12.7】2015·第四届TOP 100 Summit 享誉业界的全球软件案例研究峰会TOP 100 Summit将于12月5-7日在北京国家会议中心举行。本届TOP 100 Summit案例来自互联网公司、电商企业、智能硬件企业、互联网金融公司等各个领域的技术研发团队,案例议题设计产品创新、互联网转型、团队敏捷提升、大数据、架构设计、自动化运维、质量管理等热点议题。 好雨云受主办方麦思博邀请将参加本次大会。 好雨云CEO 刘凡将分享《好雨云使用OKRs做绩效管理》 案例简述 绩效管理的作用
作者 | 易点天下数据平台团队 近年来数字化搞得如火如荼,越来越多的人意识到数据的重要性。面对爆发式增长的数据,如何让数据有序的存储,快速的查询产生价值是数据仓库考虑的问题,也是 OLAP 引擎主要解决的问题。因此也产生了一批优秀的开源 OLAP 引擎,例如 Kylin、Druid、ClickHouse、StarRocks 等。 易点天下作为一家技术驱动发展的企业国际化智能营销服务公司,公司积极采用大数据和人工智能技术来落地和推动业务的发展。随着公司业务的扩展,数据处理需求日益增多,业务快速迭代和发展的情
由于历史原因,大型集团企业往往多个帐套系统共存,包括国内知名ERP厂商浪潮、用友、金蝶、速达所提供的财务系统,集团财务共享中心的财务人员在核对财务凭证数据时经常需要跨多个系统查询且每个系统使用方式不一,同时因为系统累计数据庞大,制单和查询操作经常出现卡顿,工作效率非常低。
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
在之前的 【Python】Python 字面量 ( Python 数据类型 | Python 字面量含义 | 使用 print 函数输出字面量 ) 博客中 , 介绍了数据类型 ;
领取专属 10元无门槛券
手把手带您无忧上云