首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

C# EmguCV调整垫大小,但保持边界/分辨率

C#是一种面向对象的编程语言,EmguCV是一个基于OpenCV的C#图像处理库。调整垫大小是指改变图像的尺寸,而保持边界/分辨率是指在调整大小的过程中保持图像的边界和分辨率不变。

在C#中使用EmguCV调整图像大小并保持边界/分辨率,可以通过以下步骤实现:

  1. 导入EmguCV库:在C#项目中,需要先导入EmguCV库,可以通过NuGet包管理器安装Emgu.CV和Emgu.CV.runtime.x86(或Emgu.CV.runtime.x64,根据项目的平台选择)。
  2. 加载图像:使用EmguCV的Image类加载原始图像。可以使用Image.FromFile方法从文件中加载图像,或者使用Image.FromStream方法从流中加载图像。
  3. 调整图像大小:使用Image类的Resize方法调整图像的大小。可以指定新的宽度和高度,也可以指定缩放比例。
代码语言:txt
复制
Image<Bgr, byte> image = new Image<Bgr, byte>("path/to/image.jpg");
Image<Bgr, byte> resizedImage = image.Resize(new Size(newWidth, newHeight), Inter.Linear);

其中,Bgr表示图像的颜色空间,byte表示像素值的数据类型。newWidthnewHeight是调整后的图像宽度和高度。

  1. 保持边界/分辨率:为了保持图像的边界/分辨率不变,可以使用EmguCV的CvInvoke类的WarpAffine方法。该方法可以根据指定的变换矩阵对图像进行仿射变换,从而保持图像的边界/分辨率不变。
代码语言:txt
复制
Matrix<float> transformationMatrix = new Matrix<float>(new float[,]
{
    { scaleRatioX, 0, 0 },
    { 0, scaleRatioY, 0 }
});
CvInvoke.WarpAffine(resizedImage, resizedImage, transformationMatrix, resizedImage.Size);

其中,scaleRatioXscaleRatioY是水平和垂直方向的缩放比例。

最后,可以将调整后的图像保存到文件或者显示在界面上。

这是C#使用EmguCV调整图像大小并保持边界/分辨率的基本步骤。在实际应用中,可以根据具体需求进行更多的图像处理操作,如滤波、边缘检测等。

腾讯云相关产品和产品介绍链接地址:

请注意,以上链接仅供参考,具体产品选择应根据实际需求进行评估。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • PGA-Net:基于金字塔特征融合与全局上下文注意力网络的自动表面缺陷检测

    缺陷检测是工业产品处理中的一项重要任务。当前,已经有很多基于计算机视觉技术的检测方法成功应用于工业领域并取得了较好的检测结果。然而,受限于类间表面缺陷的内在复杂性,使得实现完全自动的缺陷检测仍然面临巨大挑战。虽然,类间缺陷包含相似的部分,但是缺陷的表面仍然存在较大的不同。为了解决这个问题,论文提出了一种金字塔特征融合与全局上下文注意力网络的逐像素表面缺陷检测方法,并命名为PGA-Net。在这个框架中,首先从骨干网络提取多尺度特征。然后,使用金字塔特征融合模块,通过一些有效的跳连接操作将5个不同分辨率的特征进行融合。最后,再将全局上下文注意模块应用于相邻分辨率的融合特征,这使得有效信息从低分辨率融合特征图传播到高分辨率融合特征图。另外,在框架中还加入边界细化模块,细化缺陷边界,提高预测结果。实验结果证明,所提方法在联合平均交点和平均像素精度方面优于对比方法。

    01

    Science:神经元活动的高时空分辨率在体直接成像

    长期以来,对非侵入性神经成像方法的需求一直存在,这种方法可以在高时间和高空间分辨率下检测神经元活动。我们提出了一种二维快速线扫描方法,能够以毫秒精度直接成像神经元活动,同时保留磁共振成像(MRI)的高空间分辨率。在电须垫刺激期间,这种方法通过9.4特斯拉的活体小鼠大脑成像得到了证明。体内峰值记录和光遗传学证实了所观察到的MRI信号与神经活动的高度相关性。它还捕获了沿着丘脑皮层通路的神经元活动的顺序和层状特异性传播。这种对神经元活动的高分辨率、直接成像将通过提供对大脑功能组织(包括神经网络的时空动力学)的更深入理解,为脑科学开辟新的途径。

    01

    A Comparison of Super-Resolution and Nearest Neighbors Interpolation

    随着机器视觉和深度卷积神经网络(CNNs)被应用于新的问题和数据,网络架构的进步和这些网络的应用都得到了快速的发展。然而,在大多数分类和目标检测应用中,图像数据是这样的,感兴趣的对象相对于场景来说是很大的。这可以在最流行的公共基准数据集ImageNet、VOC、COCO和CIFAR中观察到。这些数据集和它们对应的挑战赛继续推进网络架构比如SqueezeNets, Squeeze-and-Excitation Networks, 和 Faster R-CNN。对于DigitalGlobe的WorldView-3卫星将每个像素表示为30平方厘米的区域的卫星数据。在这些场景中,在大于3000x3000的场景中像汽车这样的物体通常是13x7像素或更小。这些大型场景需要预处理,以便在现代目标检测网络中使用,包括将原始场景切割成更小的组件用于训练和验证。除此之外,在停车场和繁忙的道路等区域,车辆等物体往往位于较近的位置,这使得车辆之间的边界在卫星图像中难以感知。缺乏公共可用的标记数据也阻碍了对这个应用程序空间的探索,只有xView Challenge数据集拥有卫星捕获的带有标记对象的图像。等空中数据集分类细粒度特性在空中图像(COFGA),大规模数据集在空中图像(队伍),对象检测和汽车开销与上下文(COWC)也有类似的对象类,但存在一个较低的地面样本距离(德牧)使他们更容易获得良好的对象检测结果,但限制了实际应用。考虑到将CNNs应用于卫星数据所面临的挑战,将升级作为预处理步骤对实现准确探测目标的良好性能至关重要。深度学习的进步导致了许多先进的体系结构可以执行升级,在低分辨率图像上训练网络,并与高分辨率副本进行对比验证。尽管关于这一主题的文献越来越多,但超分辨率(SR)在目标检测和分类问题上的应用在很大程度上还没有得到探索,SR与最近邻(NN)插值等也没有文献记载。SR网络作为卫星图像中目标检测的预处理步骤,具有良好的应用前景,但由于其深度网络包含数百万个必须正确训练的参数,因此增加了大量的计算成本。与SR不同的是,NN仍然是最基本的向上缩放方法之一,它通过取相邻像素并假设其值来执行插值,从而创建分段阶跃函数逼近,且计算成本很小。

    03

    YOLC 来袭 | 遥遥领先 !YOLO与CenterNet思想火花碰撞,让小目标的检测性能原地起飞,落地价值极大 !

    为了解决这些问题,作者提出了YOLC(You Only Look Clusters),这是一个高效且有效的框架,建立在 Anchor-Free 点目标检测器CenterNet之上。为了克服大规模图像和不均匀物体分布带来的挑战,作者引入了一个局部尺度模块(LSM),该模块自适应搜索聚类区域进行放大以实现精确检测。 此外,作者使用高斯Wasserstein距离(GWD)修改回归损失,以获得高质量的边界框。在检测Head中采用了可变形卷积和细化方法,以增强小物体的检测。作者在两个空中图像数据集上进行了大量实验,包括Visdrone2019和UAVDT,以证明YOLC的有效性和优越性。

    02

    Feature Pyramid Networks for Object Detection

    特征金字塔是不同尺度目标识别系统的基本组成部分。但最近的深度学习对象检测器已经避免了金字塔表示,部分原因是它们需要大量的计算和内存。本文利用深卷积网络固有的多尺度金字塔结构构造了具有边际额外成本的特征金字塔。提出了一种具有横向连接的自顶向下体系结构,用于在所有尺度上构建高级语义特征图。该体系结构称为特征金字塔网络(FPN),作为一种通用的特征提取器,它在几个应用程序中得到了显著的改进。在一个基本的Fasater R-CNN系统中使用FPN,我们的方法在COCO检测基准上实现了最先进的单模型结果,没有任何附加条件,超过了所有现有的单模型条目,包括来自COCO 2016挑战赛冠军的条目。此外,我们的方法可以在GPU上以每秒6帧的速度运行,因此是一种实用而准确的多尺度目标检测解决方案。

    02

    SSD: Single Shot MultiBox Detector

    本文提出了一个使用单一深度神经网络对图像中的目标进行检测的方法。本文的方法称为SSD,根据每个feature map位置不同的宽高比和尺度,将Bounding Box的输出离散为Bounding Box先验的集合。在预测时,网络产生置信度,认为每个先验对应感兴趣的目标,并对先验进行调整,以便更好地匹配目标的形状。此外,该网络结合了来自具有不同分辨率的多个特征图的预测,以自然地处理不同大小的目标。SSD模型相对于需要目标建议的方法(如R-CNN和MultiBox)是简单的,因为它完全抛弃了生成建议的步骤,并将所有计算封装在一个网络中。这使得SSD易于训练,并且易于集成到需要检测组件的系统中。在ILSVRC DET和PASCAL VOC数据集上的实验结果证实,SSD的性能与使用目标建议步骤的方法相当,但速度要快100-1000倍。与其他单阶段方法相比,SSD具有相似或更好的性能,为训练和推理提供了统一的框架。

    01
    领券