这是有关创建自定义可编程渲染管道的系列教程的第八部分。通过增加对遮罩,细节和法线贴图的支持,可以创建复杂的表面。
在 《 Metal 框架之使用 Metal 来绘制视图内容 》中,介绍了如何设置 MTKView 对象并使用渲染通道更改视图的内容,实现了将背景色渲染为视图的内容。本示例将介绍如何配置渲染管道,作为渲染通道的一部分,在视图中绘制一个简单的 2D 彩色三角形。该示例为每个顶点提供位置和颜色,渲染管道使用该数据,在指定的顶点颜色之间插入颜色值来渲染三角形。
相比于上一篇helloWorld,这一篇内容增加了顶点数据和Metal的内容。
(温馨提示:本系列知识是循序渐进的,推荐第一次阅读的同学从第一章看起,链接在文章底部)
如果要创建一个更加真实的场景,我们就需要模拟光和物体表面的交互。这比我们之前制作的不受光的着色器要复杂的多。
这是渲染系列的第三篇文章,上一节介绍了着色器和纹理。我们已经看到了如何使用单一的纹理制作一个用平坦的表面完成的复杂显示的例子,现在我们更进一步,一次同时使用多个。
这是关于渲染的系列教程的第四部分。上一部分是关于组合纹理的。这次,我们将研究如何计算光照。
由于处理器性能和电池容量有限,在移动设备上使用计算密集的机器学习模型进行推断是非常耗资源的。 虽然可以采用一种加速途径:转换为定点数模型,但用户已经要求作为一种选项,为加速原始浮点模型推理提供GPU支持,而不会产生额外的复杂性和潜在的量化精度损失。
执行纹理映射的通常方法是使用网格中每个顶点存储的UV坐标。但这不是唯一的方法。有时,没有可用的UV坐标。例如,当使用任意形状的过程几何时。在运行时创建地形或洞穴系统时,通常无法为适当的纹理展开生成UV坐标。在这些情况下,我们必须使用另一种方式将纹理映射到我们的表面上。其中一种方法是三向贴图。
这里是一篇Metal新手教程,先定个小目标:把绘制一张图片到屏幕上。 Metal系列教程的代码地址; OpenGL ES系列教程在这里;
这是关于渲染的系列教程的第十部分。上一次,我们使用了多个纹理来创建复杂的材质。这次我们再增加一些复杂度,并且还支持多材质编辑。
在上一个教程中,我们设置了一个顶点缓冲区并将一个三角形传递给GPU。 现在,我们将逐步完成图形管道并查看每个阶段的工作原理。 将解释着色器和效果系统的概念。
这是有关创建自定义脚本渲染管线的系列教程的第15部分。我们将基于颜色和深度纹理来创建基于深度的淡入和扭曲粒子。
最近开始关注OpenGL ES 2.0 这是真正意义上的理解的第一个3D程序 , 从零开始学习 .
Metal入门教程(一)图片绘制 Metal入门教程(二)三维变换 Metal入门教程(三)摄像头采集渲染 Metal入门教程(四)灰度计算
在应用程序调用任何OpenGL执行之前,首先需要创建一个OpenGL的上下文。这个上下文是一个非常庞大的状态机,保存了OpenGL中的各种状态,这也是OpenGL指令的基础。
前面发了一些关于 Shader 编程的文章,有读者反馈太碎片化了,希望这里能整理出来一个系列,方便系统的学习一下 Shader 编程。
OpenGL是一套多功能开放标准库,用于处理可视化2D和3D数据。OpenGL可以将调用函数转换成图形处理命令并传送给底层图形硬件,因此OpenGL的绘制效率非常快。
腾讯ISUX isux.tencent.com 社交用户体验设计 《The PBR Guide》是由Substance by Adobe,Demo Artist Team负责人Wes McDermott主笔,并由3D领域各路专家共同编制的PBR指引手册。本书分为“物理现象浅析”及“材质制作指南”两大部分,从理论到实践,深度解析PBR工作流。 近日在研究3D-TO-H5工作流及学习PBR的过程中,发现Substance官方新版的《The PBR Guide》尚未有完整的中文翻译,所以把心一横,
这是关于学习使用Unity的基础知识的系列文章中的第五篇。这次,我们将使用计算着色器显著提高图形的分辨率。
虽然移动设备的处理能力和功率都有限。虽然TensorFlow Lite提供了不少的加速途径,比如将机器学习模型转换成定点模型,但总是会在模型的性能或精度上做出让步。
不同的处理器架构使用各种策略来避免延迟。CPU经过优化,可以处理各种数据结构和大型代码库。CPU可以有多个处理器,但每个处理器都以串行方式运行代码,有限的SIMD向量处理是次要的例外。为了尽量减少延迟的影响,CPU的大部分芯片都由快速本地缓存组成,内存中充满了接下来可能需要的数据。CPU还通过使用智能的技术来避免延迟,例如分支预测、指令重新排序、寄存器重命名和缓存预取[715]。
VEX 程序是为特定的上下文编写的。 例如,控制对象表面颜色的着色器是为表面surface上下文编写的。 为灯光light上下文编写了用于确定灯光照度的着色器。 创建或过滤通道数据的 VEX 程序是为斩波chop上下文编写的。
腾讯ISUX isux.tencent.com 社交用户体验设计 近日在研究3D-TO-H5工作流及学习PBR的过程中,发现Substance官方新版的《The PBR Guide》尚未有完整的中文翻译,所以把心一横,斗胆翻译了一波,希望能抛砖引玉,让大家更深入浅出地了解3D材质贴图及PBR技术。 PBR,Physically-Based Rendering,意为基于物理的渲染,是一种能对光在物体表面的真实物理反应提供精确渲染的方法,也是近年来极其生猛的3D工业趋势。 《The PBR Gu
这是渲染系列的第二篇文章,第一篇讲述的是矩阵,这次我们会写我们的第一个Shader并且导入一张纹理。
流水线 1.应用阶段:(CPU)输出渲染图元,粗粒度剔除等 比如完全不在相机范围内的需要剔除,文件系统的粒子系统实现就用到粗粒度剔除。 2.几何阶段:(GPU)把顶点坐标转换到屏幕空间,包含了模型空间 到世界空间 到观察空间(相机视角view) 到齐次裁剪空间(投影project2维空间,四维矩阵,通过-w<x<w判断是否在裁剪空间) 到归一化设备坐标NDC(四维矩阵通过齐次除法,齐次坐标的w除以xyz实现归一化) 到屏幕空间(通过屏幕宽高和归一化坐标计算)。 a.顶点着色器:坐标变换和逐顶点光照,将顶点空间转换到齐次裁剪空间。 b.曲面细分着色器:可选 c.几何着色器:可选 d.裁剪:通过齐次裁剪坐标的-w<x<w判断不在视野范围内的部分或者全部裁剪,归一化。 e.屏幕映射:把NDC坐标转换为屏幕坐标 3.光栅化阶段:(GPU)把几何阶段传来的数据来产生屏幕上的像素,计算每个图元覆盖了哪些像素,计算他们的颜色、 a.三角形设置:计算网格的三角形表达式 b.三角形遍历:检查每个像素是否被网格覆盖,被覆盖就生成一个片元。 c.片元着色器:对片元进行渲染操作 d.逐片元操作:模板测试,深度测试 混合等 e.屏幕图像 ------------------------------------------------------- 矩阵: M*A=A*M的转置(M是矩阵,A是向量,该公式不适合矩阵与矩阵) 坐标转换: o.pos = mul(UNITY_MATRIX_MVP, v.vertex);顶点位置模型空间到齐次空间 o.worldNormal = mul((float3x3)_Object2World,v.normal);//游戏中正常的法向量转换,转换后法向量可能不与原切线垂直,但是不影响游戏显示,而且大部分显示也是差不多的。一般用这个就行了。 o.worldNormal = mul(v.normal, (float3x3)_World2Object);顶点法向量从模型空间转换到世界空间的精确算法,公式是用_Object2World该矩阵的逆转置矩阵去转换法线。然后通过换算得到该行。 ------------------------------------------------------- API: UNITY_MATRIX_MVP 将顶点方向矢量从模型空间变换到裁剪空间 UNITY_MATRIX_MV 将顶点方向矢量从模型空间变换到观察空间 UNITY_MATRIX_V 将顶点方向矢量从世界空间变换到观察空间 UNITY_MATRIX_P 将顶点方向矢量从观察空间变换到裁剪空间 UNITY_MATRIX_VP 将顶点方向矢量从世界空间变换到裁剪空间 UNITY_MATRIX_T_MV UNITY_MATRIX_MV的转置矩阵 UNITY_MATRIX_IT_MV UNITY_MATRIX_MV的逆转置矩阵,用于将法线从模型空间转换到观察空间 _Object2World将顶点方向矢量从模型空间变换到世界空间,矩阵。 _World2Object将顶点方向矢量从世界空间变换到模型空间,矩阵。 模型空间到世界空间的矩阵简称M矩阵,世界空间到View空间的矩阵简称V矩阵,View到Project空间的矩阵简称P矩阵。 --------------------------------------------- _WorldSpaceCameraPos该摄像机在世界空间中的坐标 _ProjectionParams _ScreenParams _ZBufferParams unity_OrthoParams unity_Cameraprojection unity_CameraInvProjection unity_CameraWorldClipPlanes[6]摄像机在世界坐标下的6个裁剪面,分别是左右上下近远、 ---------------------------- 1.表面着色器 void surf (Input IN, inout SurfaceOutput o) {}表面着色器,unity特殊封装的着色器 Input IN:可以引用外部定义输入参数 inout SurfaceOutput o:输出参数 struct SurfaceOutput//普通光照 { half3 Albedo;//纹理,反射率,是漫反射的颜色值 half3 Normal;//法线坐标 half3 Emission;//自发光颜色 half Specular;//高光,镜面反射系数 half Gloss;//光泽度 half Alpha;//alpha通道 } 基于物理的光照模型:金属工作流Surfa
OpenGL ES _ 入门_01 OpenGL ES _ 入门_02 OpenGL ES _ 入门_03 OpenGL ES _ 入门_04 OpenGL ES _ 入门_05 OpenGL ES _ 入门练习_01 OpenGL ES _ 入门练习_02 OpenGL ES _ 入门练习_03 OpenGL ES _ 入门练习_04 OpenGL ES _ 入门练习_05 OpenGL ES _ 入门练习_06 OpenGL ES _ 着色器 _ 介绍 OpenGL ES _ 着色器 _ 程序 OpenGL ES _ 着色器 _ 语法 OpenGL ES_着色器_纹理图像 OpenGL ES_着色器_预处理 OpenGL ES_着色器_顶点着色器详解 OpenGL ES_着色器_片断着色器详解 OpenGL ES_着色器_实战01 OpenGL ES_着色器_实战02 OpenGL ES_着色器_实战03
要绘制物体,CPU需要告诉GPU应该绘制什么和如何绘制。通常我们用Mesh来决定绘制什么。而如何绘制是由着色器控制的,着色器实际上就是一组GPU的指令。除了Mesh之外,着色器还需要很多其他的信息来协同完成它的工作,比如对象的transform矩阵和材质属性等。
OpenGL首先我们从字面意思来理解:Open Graphics Library,开放的图形库,图形库自然是处理图形的,所以简单来说OpenGL就是用来处理图形的一个三方库。 稍微技术流一点,作如下解释:是用于渲染2D,3D矢量图形的跨语言、跨平台的应用程序编程接口(API)。
这些代码不需要包含在任何Pass语义块中,在使用时,我们只需要在Pass中直接指定需要使用的顶点着色器和片元着色器函数名即可。CGINCLUDE类似于C++中头文件的功能。由于高斯模糊需要定义两个Pass,但它们使用的片元着色器代码是完全相同的,使用CGINCLUDE可以避免我们编写两个完全一样的frag函数。
用于可视化OpenGL ES设计的两个方面:作为客户端 - 服务器体系结构和作为管道。 这两种观点都可以用于规划和评估应用程序的体系结构。
这是关于渲染的系列教程的第16部分。上次,我们渲染了自己的延迟灯光。在这一部分中,我们转到灯光贴图上来。
iOS/Android 客户端开发同学如果想要开始学习音视频开发,最丝滑的方式是对音视频基础概念知识有一定了解后,再借助 iOS/Android 平台的音视频能力上手去实践音视频的采集 → 编码 → 封装 → 解封装 → 解码 → 渲染过程,并借助音视频工具来分析和理解对应的音视频数据。
大家好,本文是 iOS/Android 音视频专题的第五篇,该专题中 AVPlayer 项目代码将在 Github 进行托管,你可在微信公众号(GeekDev)后台回复资料 获取项目地址。
这是有关创建自定义可脚本渲染管道的系列教程的第13部分。这次,我们将添加各种用于颜色分级的工具。
今天我们讲一下OpenGL与OpenGL在移动端的应用 OpenGL,Open Graphics Library,开放式图形库,就是一个库,与我们平时使用的三方库差不多。 OpenGL在移动端的表现形式为OpenGLES(OpenGL for Embedded Systems),是 OpenGL 三维图形 API 的子集,针对手机、PDA和游戏主机等嵌入式设备而设计。
OpenGL ES 3.0实现了具有 可编程着色功能 的图形管线,由 OpenGL ES 3.0 API 和 OpenGL ES 着色语言3.0规范 组成。 下图中深色背景的 顶点着色器 和 片段着色器 为可编程阶段。
翻译自https://github.com/CyberAgentGameEntertainment/UnityPerformanceTuningBible/ 性能调优需要对整个应用程序进行检查和修改。因此,有效的性能调整需要广泛的知识,从硬件到3D渲染再到Unity机制。因此,本章总结了执行性能调优所需的基本知识
本文介绍了Unity引擎在移动游戏开发中的性能优化方案,包括CPU、GPU、内存、渲染、加载等方面的优化。通过优化代码、减少资源、使用LOD系统、避免使用动态对象、及时释放不再使用的资源等方法,可以提高游戏的性能和稳定性。
之前在一篇文章(实现两个任天堂 Switch 的加载动画)里为了实现不同亮度的 Grid,使用了一个 LightenConverter 类,但是它只能处理 SolidColorBrush。为了可以应用在更多场合,这篇文章自己写一个 Effect 来实现相同 Lighten 的效果。
这是有关创建自定义脚本渲染管道的系列教程的第七部分。它涵盖了详细的层次结构(LOD)和简单的反射,可以为场景添加细节。
之前尝试将一个GLSL version 110的版本写成GLSL version 330的,在此将学习过程和收获记录下来。
前两篇分别介绍了UE(1):材质系统和UE(2):材质着色器,主要侧重如何生成材质,本篇的主题是延迟渲染管线(Deferred Shading Pipeline),涉及的是如何通过着色器使用材质,我愿称它为最长的一帧。
这一章介绍了计算机与图形硬件和实际编程相关的内容, 其中主要利用OpenGL简单介绍了实际的图形编程部分, 但是如果想要真正开始OpenGL编程, 查阅其它资料是必不可少的. 注意这一章最新的英文版和中文版由于时代不同所以内容差别非常大, 建议还是阅读英文版本.
这是关于学习使用Unity的基础知识的系列教程中的第七篇。在其中我们会调整分形,使其最终看起来比数字化的结果更自然。
最近AIGC有多火不用多说了,只需一张朴实无华的自拍,就可以让你变身肌肉型男,拥有一个自己二次元的完美角色。
这是有关创建自定义脚本渲染管道的系列教程的第14部分。这次,我们重新考虑了使用多个摄像机的渲染,现在添加了post FX。
一:什么是协同程序? 答:在主线程运行时同时开启另一段逻辑处理,来协助当前程序的执行。换句话说,开启协程就是开启一个可以与程序并行的逻辑。可以用来控制运动、序列以及对象的行为。
领取专属 10元无门槛券
手把手带您无忧上云