首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Matlab radon()函数是“圆形”radon变换吗?

Matlab的radon()函数是用于进行雷登变换(Radon Transform)的函数,而不是用于进行圆形雷登变换的函数。

雷登变换是一种在医学成像领域广泛应用的数学变换方法,它可以将二维图像转换为一组投影数据。这些投影数据可以用于重建原始图像,从而在医学诊断和图像处理中起到重要作用。

radon()函数的主要功能是计算给定图像的雷登变换投影数据。它接受一个二维图像作为输入,并返回一个二维矩阵,其中每一列代表一个特定角度的投影数据。这些投影数据可以用于后续的图像重建或分析。

Matlab提供了丰富的图像处理工具和函数,radon()函数是其中之一。它可以在医学图像处理、CT扫描、图像重建等领域中发挥重要作用。

腾讯云提供了一系列与图像处理相关的产品和服务,例如腾讯云图像处理(Image Processing)服务。该服务提供了图像处理的基本功能,包括图像格式转换、图像缩放、图像裁剪、图像滤波等。您可以通过以下链接了解更多关于腾讯云图像处理服务的信息:

https://cloud.tencent.com/product/img-processing

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

【深度干货】专知主题链路知识推荐#5-机器学习中似懂非懂的马尔科夫链蒙特卡洛采样(MCMC)入门教程01

【导读】主题链路知识是我们专知的核心功能之一,为用户提供AI领域系统性的知识学习服务,一站式学习人工智能的知识,包含人工智能( 机器学习、自然语言处理、计算机视觉等)、大数据、编程语言、系统架构。使用请访问专知 进行主题搜索查看 - 桌面电脑访问www.zhuanzhi.ai, 手机端访问www.zhuanzhi.ai 或关注微信公众号后台回复" 专知"进入专知,搜索主题查看。今天给大家继续介绍我们独家整理的机器学习——马尔科夫链蒙特卡洛采样(MCMC)方法。 上一次我们详细介绍了贝叶斯参数估计,里面我们

07
  • matlab实现图像预处理的很多方法

    RGB = imread('sy.jpg');                     % 读入图像 imshow(RGB),                                  % 显示原始图像 GRAY = rgb2gray(RGB);                          % 图像灰度转换 imshow(GRAY),                                  % 显示处理后的图像 threshold = graythresh(GRAY);                    % 阈值 BW = im2bw(GRAY, threshold);                     % 图像黑白转换 imshow(BW),                                      % 显示处理后的图像 BW = ~ BW;                                       % 图像反色 imshow(BW),                                      % 显示处理后的图像 1.图像反转 MATLAB程序实现如下: I=imread('xian.bmp'); J=double(I); J=-J+(256-1);                 %图像反转线性变换 H=uint8(J); subplot(1,2,1),imshow(I); subplot(1,2,2),imshow(H); 2.灰度线性变换 MATLAB程序实现如下: I=imread('xian.bmp'); subplot(2,2,1),imshow(I); title('原始图像'); axis([50,250,50,200]); axis on;                  %显示坐标系 I1=rgb2gray(I); subplot(2,2,2),imshow(I1); title('灰度图像'); axis([50,250,50,200]); axis on;                  %显示坐标系 J=imadjust(I1,[0.1 0.5],[]); %局部拉伸,把[0.1 0.5]内的灰度拉伸为[0 1] subplot(2,2,3),imshow(J); title('线性变换图像[0.1 0.5]'); axis([50,250,50,200]); grid on;                  %显示网格线 axis on;                  %显示坐标系 K=imadjust(I1,[0.3 0.7],[]); %局部拉伸,把[0.3 0.7]内的灰度拉伸为[0 1] subplot(2,2,4),imshow(K); title('线性变换图像[0.3 0.7]'); axis([50,250,50,200]); grid on;                  %显示网格线 axis on;                  %显示坐标系 3.非线性变换 MATLAB程序实现如下: I=imread('xian.bmp'); I1=rgb2gray(I); subplot(1,2,1),imshow(I1); title('灰度图像'); axis([50,250,50,200]); grid on;                  %显示网格线 axis on;                  %显示坐标系 J=double(I1); J=40*(log(J+1)); H=uint8(J); subplot(1,2,2),imshow(H); title('对数变换图像'); axis([50,250,50,200]); grid on;                  %显示网格线 axis on;                  %显示坐标系 4.直方图均衡化 MATLAB程序实现如下: I=imread('xian.bmp'); I=rgb2gray(I); figure; subplot(2,2,1); imshow(I); subplot(2,2,2); imhist(I); I1=histeq(I); figure; subplot(2,2,1); imshow(I1); subplot(2,2,2); imhist(I1); 5.线性平滑滤波器 用MATLAB实现领域平均法抑制噪声程序: I=im

    02

    随机振动 matlab,Matlab内建psd函数在工程随机振动谱分析中的修正方法「建议收藏」

    随机信号的功率谱分析是一种广泛使用的信号处理方法,能够辨识随机信号能量在频率域的分布,同时也是解决多种工程随机振动问题的主要途径之一.Matlab作为大型数学分析软件,得到了广泛应用,目前已推出7.x的版本.Matlab内建了功能强大的信号处理工具箱.psd函数是Matlab信号处理工具箱中自功率谱分析的主要内建函数.Matlab在其帮助文件中阐述psd函数时均将输出结果直接称为powerspectrumdensity,也即我们通常所定义的自功率谱.实际上经分析发现,工程随机振动中功率谱标准定义[1]与Matlab中psd函数算法有所区别,这一点Matlab的帮助文档没有给出清晰解释.因此在使用者如没有详细研究psd函数源程序就直接使用,极易导致概念混淆,得出错误的谱估计.本文详细对比了工程随机振动理论的功率谱定义与Matlab中psd函数计算功率谱的区别,并提出用修正的psd函数计算功率谱的方法,并以一组脉动风压作为随机信号,分别采用原始的psd函数与修正后的psd函数分别对其进行功率谱分析,对比了两者结果的差异,证实了本文提出的修正方法的有效性.1随机振动相关理论1.1傅立叶变换求功率谱理论上,平稳随机过程的自功率谱密度定义为其自相关函数的傅立叶变换:Sxx()=12p+-Rxx(t)eitdt(1)其中,S(xx)()为随机信号x(t)的自功率谱密度,Rxx(t)为x(t)的自相关函数.工程随机振动中的随机过程一般都是平稳各态历经的,且采样信号样本长度是有限的,因此在实用上我们采用更为有效的计算功率谱的方法,即由时域信号x(t)构造一个截尾函数,如式(2)所示:xT(t)=x(t),0tT0,其他(2)其中,t为采样时刻,T为采样时长,x(t)为t时刻的时域信号值.由于xT(t)为有限长,故其傅立叶变换A(f,T)以及对应的逆变换存在,分别如式(3)、(4)所示:A(f,T)=+-xT(t)e-i2pftdt(3)xT(t)=+-A(f,T)ei2pftdt(4)由于所考虑过程是各态历经的,可以证明:Sxx(f)=limT1TA(f,T)2(5)在实际应用中,式(5)是作功率谱计算的常用方法.1.2功率谱分析中的加窗和平滑处理在工程实际中,为了降低工程随机信号的误差,一般对谱估计需要进行平滑处理.具体做法为:将时域信号{x(t)}分为n段:{x1(t)},{x2(t)},…,{xn-1(t)},{xn(t)},对每段按照式(5)求功率谱Sxixi(f),原样本的功率谱可由式(6)求得:Sxx(f)=1nni=1Sxixi(f)(6)如取一样本点为20480的样本进行分析,将样本分割为20段进行分析,每段样本点数为1024.将每段1024个样本点按照式(5)的方法分别计算功率谱后求平均,即可得到经过平滑处理的原样本的功率谱,这样计算出的平滑谱误差比直接计算要降低很多.另一方面,由于实际工程中随机信号的采样长度是有限的,即采样信号相当于原始信号的截断,即相当于用高度为1,长度为T的矩形时间窗函数乘以原信号,导致窗外信息完全丢失,引起信息损失.时域的这种信号损失将会导致频域内增加一些附加频率分量,给傅立叶变换带来泄漏误差.构造一些特殊的窗函数进行信号加窗处理可以弥补这种误差,即构造特殊的窗函数{u(t)},用{u(t)}去乘以原数据,对{x(t)u(t)}作傅立叶变换可以减少泄漏:Aw(f,T)=+-u(t)xT(t)e-i2pftdt(7)其中,Aw(f,T)为加窗后的傅立叶变换.u(t)xT(t)实际上是对数据进行不等加权修改其结果会使计算出

    01

    基于MATLAB的AM调制解调

    现在的社会越来越发达,科学技术不断的在更新,在信号和模拟电路里面经常要用到调制与解调,而AM的调制与解调是最基本的,也是经常用到的。用AM调制与解调可以在电路里面实现很多功能,制造出很多有用又实惠的电子产品,为我们的生活带来便利。在我们日常生活中用的收音机就是采用了AM调制的方式,而且在军事和民用领域都有十分重要的研究课题。现用MATLAB中M文件实现本课程设计内容“基于MATLAB的AM调制解调实现”。在课程设计中,系统开发平台为Windows XP,MTALAB 2007,程序设计语言采用MATLAB 2007,程序运行平台为MATLAB 2007。通过MATLAB编写程序并加以调试能够实现AM的调制与调解,完成了课程设计的目标,并经过适当完善后,将可以在实际中应用。

    02

    基于MATLAB的AM调制解调「建议收藏」

    摘要 现在的社会越来越发达,科学技术不断的在更新,在信号和模拟电路里面经常要用到调制与解调,而AM的调制与解调是最基本的,也是经常用到的。用AM调制与解调可以在电路里面实现很多功能,制造出很多有用又实惠的电子产品,为我们的生活带来便利。在我们日常生活中用的收音机就是采用了AM调制的方式,而且在军事和民用领域都有十分重要的研究课题。现用MATLAB中M文件实现本课程设计内容“基于MATLAB的AM调制解调实现”。在课程设计中,系统开发平台为Windows XP,MTALAB 2007,程序设计语言采用MATLAB 2007,程序运行平台为MATLAB 2007。通过MATLAB编写程序并加以调试能够实现AM的调制与调解,完成了课程设计的目标,并经过适当完善后,将可以在实际中应用。

    04

    一阶惯性滤波电路图_matlab比例微分环节

    我身边有些朋友说现在在学校学习什么拉氏变换,Z变换,傅立叶变换没有用,传递函数没有用,差分方程没有用,只是纸上谈兵,我这里先就传递函数和拉氏变换和差分方程介绍几点不自量力的看法,我们学习拉氏变换主要是为了从脱离时域,因为时域分析有它的难度指数,我们从时域映射到S域,目的只有一个,那就是简化计算,正如我们在时域要计算卷积过来,卷积过去,我们把它映射到S域过后,就是乘积过来积乘过去,相对来说,乘积要比卷积的积分要温柔的多,然后我们在S域里面得到结论过后,再将其反映射回到时域,然后自然地在时域使用其所得的结论了。

    02

    基于matlab的语音信号频谱分析_声音信号的数字化过程

    随着软硬件技术的发展,仪器的智能化与虚拟化已成为未来实验室及研究机构的发展方向[1]。虚拟仪器技术的优势在于可由用户定义自己的专用仪器系统,且功能灵活,很容易构建,所以应用面极为广泛。基于计算机软硬件平台的虚拟仪器可代替传统的测量仪器,如示波器、逻辑分析仪、信号发生器、频谱分析仪等[2]。从发展史看,电子测量仪器经历了由模拟仪器、智能仪器到虚拟仪器,由于计算机性能的飞速发展,已把传统仪器远远抛到后面,并给虚拟仪器生产厂家不断带来连锅端的技术更新速率。目前已经有许多较成熟的频谱分析软件,如SpectraLAB、RSAVu、dBFA等。

    01

    matlab 马赫带效应,matlab图像处理基础实例

    ·边缘检测(edge)边缘检测时先要把其他格式图像转化为灰度图像>> f=imread( lbxx.bmp );>> a=rgb2gray(f);>> [g,t]=edge(a, canny );>> imshow(g)·剪贴(imcrop)、subplot 等imfinfo colormap subimageimadd imsubtract immultiply imdivideimresize imrotate(旋转)>> a=imread( onion.png );>> b=imcrop(a,[75 68 130 112]);% I2 = IMCROP(I,RECT)% RECT is a 4-element vector with the [XMIN YMIN WIDTH HEIGHT];% subplot(121)一行两列的显示,当前显示第一个图片>> subplot(121);imshow(a);>> subplot(122);imshow(b);·roipoly选择图像中的多边形区域>> a=imread( onion.png );>> c=[200 250 278 248 199 172];>> r=[21 21 75 121 121 75];>> b=roipoly(a,c,r);>> subplot(121);imshow(a);>> subplot(122);imshow(b);·roicolor按灰度值选择的区域>> a=imread( onion.png );>> i=rgb2gray(a);>> b=roicolor(i,128,255);>> subplot(121);imshow(a);>> subplot(122);imshow(b);·转化指定的多边形区域为二值掩膜poly2mask>> x=[63 186 54 190 63];>> y=[60 60 209 204 60];>> b=poly2mask(x,y,256,256);>> imshow(b);>> holdCurrent plot held>> plot(x,y, b , LineWidth ,2)·roifilt2区域滤波a=imread( onion.png );i=rgb2gray(a);c=[200 250 278 248 199 172];r=[21 21 75 121 121 75];b=roipoly(i,c,r);h=fspecial( unsharp );j=roifilt2(h,i,b);subplot(121),imshow(i);subplot(122),imshow(j);·roifill区域填充>> a=imread( onion.png );>> i=rgb2gray(a);>> c=[200 250 278 248 199 172];>> r=[21 21 75 121 121 75];>> j=roifill(i,c,r);>> subplot(211);imshow(i);>> subplot(212);imshow(j);·FFT变换f=zeros(100,100);f(20:70,40:60)=1;imshow(f);F=fft2(f);F2=log(abs(F));imshow(F2),colorbar·补零操作和改变图像的显示象限f=zeros(100,100);f(20:70,40:60)=1;subplot(121);imshow(f);F=fft2(f,256,256);F2=fftshift(F);subplot(122);imshow(log(abs(F2))) ·离散余弦变换(dct)>> a=imread( onion.png );>> i=rgb2gray(a);>> j=dct2(i);>> subplot(131);imshow(log(abs(j))),colorbar>> j(abs(j)> k=idct2(j);>> subplot(132);imshow(i);>> subplot(133);imshow(k,[0,255]);info=imfinfo( trees.tif )%显示图像信息·edge提取图像的边缘canny prewitt sobelradon 函数用来计算指定方向上图像矩阵的投影>> a=imread( onion.png );>> i=rgb2gray(a);>> b=edge(i);>> theta=0:179;>> [r,xp]=radon(b,theta);>> figure,imagesc(theta,xp,r);colormap(hot);>> xlabel( \theta(degrees) );>> ylabel( x\prime );>> title( r_{\theta}(x\prime) );>> colorb

    02

    基于MATLAB的语音信号处理

    摘要:语音信号处理是目前发展最为迅速的信息科学研究领域中的一个,是目前极为活跃和热门的研究领域,其研究成果具有重要的学术及应用价值。语音信号处理的研究,对于机器语言、语音识别、语音合成等领域都具有很大的意义。MATLAB软件以其强大的运算能力可以很好的完成对语音信号的处理。通过MATLAB可以对数字化的语音信号进行时频域分析,方便地展现语音信号的时域及频域曲线,并且根据语音的特性对语音进行分析。本文主要研究了基于MATLAB软件对语音信号进行的一系列特性分析及处理,帮助我们更好地发展语音编码、语音识别、语音合成等技术。本文通过应用MATLAB对语音信号进行处理仿真,包括短时能量分析、短时自相关分析等特性分析,以及语音合成等。

    01
    领券