首先,我们需要安装opencv-python和Pillow两个库。您可以使用以下命令来安装它们:
在本文中,我们将学习长时间曝光摄影技术,以及如何使用Python和OpenCV(开源计算机视觉库)对其进行仿真。
前言:视频开发库有很多,例如微软的DirectShow;开源库OpenCV,当然OpenCV主要是图像处理,视频部分还是用的ffmpeg, 而且无法解码音频;SDL;大华和海康都有自己的库等等。音视频属于流媒体领域,学习和应用难度大,周期长,容易出现人才断层,公司对应聘者的要求都比较高,让很多人望而却步。很多软件都使用了FFmpeg, 比如:迅雷,腾讯视频,QQ, 微信,QQ音乐,暴风影音,爱奇艺,优酷,格式工厂等。放几张软件目录图大家看看。 QQ客户端
之前写过一篇VC++中使用OpenCV进行颜色检测的博文,当然使用opencv-python库也可以实现。 在Python中使用opencv-python库进行颜色检测非常简单,首选读取一张彩色图像,并调用函数imgHSV = cv2.cvtColor(img,cv2.COLOR_BGR2HSV);函数将原图img转换成HSV图像imgHSV,再设置好HSV三个分量的上限和下限值,调用inRange函数imask = cv2.inRange(imgHSV,lower,upper)将HSV色彩图像转换成掩码图,掩码图中只有黑白二值图像,从而达到颜色检测的目的。颜色检测通常可以用于物体检测和跟踪中,尤其在不同的图像和物体中根据特定的颜色去筛选出某个物体。
现在说的机器视觉(Machine Vision)一般指计算机视觉(Computer Vision),简单来说就是研究如何使机器看懂东西。就是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,使电脑处理成为更合适人眼观察或传送给仪器检测的图像。
OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习软件库。它由英特尔公司发起并参与开发,以BSD许可证授权发行,可以在商业和研究领域中免费使用。OpenCV提供了大量的计算机视觉、图像处理和模式识别的算法,包括实时图像处理、视频分析、特征检测、目标跟踪、人脸识别、物体识别、图像分割、光流法、立体视觉、运动估计、机器学习和深度学习等。
Python2.7上安装Opencv2的教程网上有很多,我安装的是Python2.7,安装Opencv2按照网上的教程很顺利,但是在自己学习OpenCV-Python Tutorials教程时,cv2.connectedComponentsWithStats()这个函数不能使用,在Stackoverflow上有人说是这个函数只在Opencv3中有,故想着安装下Opencv3
参与方式:https://github.com/apachecn/pytorch-doc-zh/blob/master/CONTRIBUTING.md
参与方式:https://github.com/apachecn/seaborn-doc-zh/blob/master/CONTRIBUTING.md
[比较opencv2、opencv3关于读取视频文件、摄像头的编程风格]https://blog.csdn.net/qq_34917736/article/details/77427596
相信用过苹果电脑的小伙伴一定觉得 Mac 的 Dock 栏真的是简洁又干净!但是苹果笔记本比较倾向于高消费者! 那么就有了这么一个软件:MyDockFinder 此软件的神奇之处就是几乎还原了 Mac OS 系统原来的样子,装上几乎看不出这是 window 系统摇身一变而来!
在使用OpenCV进行图像或视频处理时,有时会遇到类似于undefined reference to cv::VideoCapture::VideoCapture()`的错误信息。这个错误通常表示找不到相应的函数或类的定义。本篇文章将介绍如何解决这个问题。
相信用过苹果电脑的小伙伴一定觉得Mac的Dock栏真的是简洁又干净!但是苹果笔记本比较倾向于高消费者!
【AI100 导读】当下深度学习的研究领域仍然停留在通用图像的层面上,但我们的目标是将这些研究应用于医学图像,提升医疗保健行业的服务水平。在这篇文章中,作者会从图像处理的基础知识、医学图像格式方面的基
我们的任务就是通过 OpenCV 在一段视频(或摄像头)中实时检测出车道并将其标记出来。其效果如下图所示:
打开浏览器,进入下载地址Release OpenCV 3.4.15 · opencv/opencv · GitHub,选择Source code(zip)进行下载
我们实现的人类活动识别模型可以识别超过400类活动,其中准确率在78.4-94.5%之间(取决于任务类别)。 比如,活动类别的可包括:
计算摄影是指使您能够扩展数字摄影的典型功能的技术。 这可能包括硬件附加组件或修改,但主要指基于软件的技术。 这些技术可能会产生“传统”数码相机无法获得的输出图像。 本章介绍了 OpenCV 中用于计算摄影的一些鲜为人知的技术:高动态范围成像,无缝克隆,脱色和非照片级渲染。 这三个位于库的photo模块中。 注意,在前面的章节中已经考虑了该模块内部的其他技术(修复和去噪)。
OpenCV官方网站下载:https://opencv.org/releases/ (官网打开速度有点慢也许打不开,可选择网盘下载或GitHub下载)
人体姿态估计是一个非常有趣的领域,如果我们能够将诸如棒球摆动或投球等运动的人体姿势量化为数据,那么我们或许能够将数据转化为有用的见解,例如伤害预防或高级训练。
采集人脸图片的方法多种多样,可以直接从网上下载数据集,可以从视频中提取图片,还可以从摄像头实时的采集图片。
代码为转载,出处找不到了,不贴了 工具条进度条: // ConvertColor.cpp : 定义控制台应用程序的入口点。 // #include "stdafx.h" #include <iostream> #include <opencv2/highgui/highgui.hpp> #include <opencv2/imgproc/imgproc.hpp> #pragma comment(lib,"opencv_core2410d.lib") #pragma com
使用OpenCV库的视频播放器(支持播放器操作,如暂停、恢复、停止、时间、进度条拽托等)。
目前可依靠模块化方式实现图像处理管道,检测一堆图像文件中的人脸,并将其与漂亮的结构化JSON摘要文件一起保存在单独的文件夹中。
在计算机视觉领域,OpenCV是一款广泛使用的开源库,用于图像处理和计算机视觉任务。当你开始使用OpenCV时,了解如何创建和显示窗口,以及加载和保存图片是至关重要的基础知识。本文将介绍如何使用OpenCV进行这些操作,帮助你更好地掌握图像处理和视觉任务的开发技巧。
当我用pip安装好opencv-pyton后,我激动得在python项目中导入cv2 就像这样:
OpenCvSharp4库是一个基于.Net封装的OpenCV库,Github源代码地址为:https://github.com/shimat/opencvsharp,里面有关于Windows下安装OpenCvSharp4库的描述,如下图所示:
前一篇我们介绍了 《C++ OpenCV摄像头及视频操作类VideoCapture介绍》,我们现在就针对这个类里的API进行DEMO的演示。
计算机视觉是人工智能技术的一个重要领域,打个比方(不一定恰当),我认为计算机视觉是人工智能时代的眼睛,可见其重要程度。计算机视觉其实是一个很宏大的概念,下图是有人总结的计算机视觉所需要的技能树。
在计算机视觉领域,OpenCV 是一个流行的开源库,提供了许多用于图像和视频处理的功能。其中,cv2.setNumThreads 是 OpenCV 中的一个函数,它用于设置并行处理的线程数目。本篇文章将详细讲解 cv2.setNumThreads 的作用和用法。
今天是第一部分:使用Pygame实现简易飞机大战小游戏。你可能会问我不会pygame怎么办?这个问题,以前买我Python OpenCV相关课程的学员我都是这么回答的,用到什么学什么,因为Python OpenCV中用到的Python知识点并不多,跟着视频不会的百度查一查就会用了,他们也顺利学完了课程。同样的,你想做的只是一个pygame的飞机大战小游戏而已,还是简易的,网上搜搜资料或者视频教程,完全可以做出来,这里贴一个视频教程,手把手教你做飞机大战游戏,B站搜索关键字pygame:
我的python版本是3.6.8,可以看到opencv安装的默认版本是 opencv_python-4.1.0.25-cp36-cp36m-win_amd64.whl
昨天我们介绍了为什么选择在Jetson TX2使用CSI相机如何在Jetson TX2上使用CSI相机,今天我们继续介绍如何获取CSI的视频。 本教程同样是来自于 在本文里,他继续告诉大家: 如何从C
OpenCV这么简单为啥不学——2、逐帧播放视频(VideoCapture函数、waitKey函数、0xFF == ord('1'))
我最近在学习 OpenCV,这里会把可以直接运行的代码附上,希望可以帮助到学习 OpenCV 的同学。
之前的内容我们成功调用了摄像头并调用opencv库函数,实现手机摄像头的是实时边缘检测,使用canny边缘检测提取图像边缘特征,当然还能实现更为复杂的函数功能。
最近有个科研课题需要在树莓派上做一系列验证,但是实验的程序是依赖OpenCV库的(最重要我们修改了库源码),而在树莓派上编译OpenCV源码很费时间,因此我只好使用交叉编译的方法来编译源程序。刚开始我们觉着网上材料大片,这部分的问题应该不大。可到操刀干活的时候,我才发现网上很多方法不仅繁琐,而且有的甚至还不是那么一回事,没看到一篇完全适合我的情况的。于是,我花了一天半左右的时间,整理这些材料并结合一点TRIZ原理,完成了这项任务。现在分享一下我的方案总结,不过我的方案不尽完善,欢迎大家指点修正,帮助后人节省时间。
前言 承接上文,作为一个经常逛b站的肥宅,近期b站上除了流行"品如”素材的视频,更多的莫过于蔡xx打球视频的了,有模仿的,有对比的,有手绘的,更过分的是竟然有人在命令行输出了他的打球视频,地址在:ht
在计算机视觉项目的开发中,OpenCV作为最大众的开源库,拥有了丰富的常用图像处理函数库,采用C/C++语言编写,可以运行在Linux/Windows/Mac等操作系统上,能够快速的实现一些图像处理和识别的任务。此外,OpenCV还提供了java、python、cuda等的使用接口、机器学习的基础算法调用,从而使得图像处理和图像分析变得更加易于上手,让开发人员更多的精力花在算法的设计上。
1999年,英特尔的 Gary Bradsky 发起了 OpenCv 项目,并于 2000 年发布第一个版本。2005年,OpenCv 被首次应用在 Stanley,这也是赢得同年 DARPA 大挑战赛的车型。如今,OpenCv 除了支持计算机视觉,还增加了众多机器学习相关算法,未来还将持续扩展。
【导读】你的五福集齐了吗?作为一名技术人,我们是不是可以用技术方法快速实现呢?今天,我们就为大家推荐四种新鲜的方法,生成风格不同又数量庞大的「福」字,让大家不用满世界找福字,动动手指即可。
应用市场上录屏工具的原理很好理解,一是屏幕,二是声音。从这个角度出发,我们就可以对屏幕和声音同步来录制,最后在将音频和视频合并在一起,最后我们就得到了我们录屏的视频。
加载分类器:使用OpenCV中的Haar分类器或Cascade分类器来检测感兴趣物体的位置。这些分类器是使用机器学习方法训练得到的,可以在图像中检测出目标物体的位置。
我们经常在B站上看到一些字符鬼畜视频,主要就是将一个视频转换成字符的样子展现出来。看起来是非常高端,但是实际实现起来确实非常简单,我们只需要接触opencv模块,就能很快的实现视频字符化。但是在此之前,我们先看看我们实现的效果是怎样的:
http://wiki.opencv.org.cn/index.php/VC_2010%E4%B8%8B%E5%AE%89%E8%A3%85OpenCV2.4.4
选自TowardsDataScience 作者:Léo Beaucourt 机器之心编译 参与:李诗萌、路雪 本文展示了如何使用 Docker 容器中的 TensorFlow 目标检测 API,通过网
(1)方法原型: CV_WRAP virtual bool read(OutputArray image);
OpenCV3 和 Qt5 计算机视觉 零、前言 一、OpenCV 和 Qt 简介 二、创建我们的第一个 Qt 和 OpenCV 项目 三、创建一个全面的 Qt + OpenCV 项目 四、Mat和QImage 五、图形视图框架 六、OpenCV 中的图像处理 七、特征和描述符 八、多线程 九、视频分析 十、调试与测试 十一、链接与部署 十二、Qt Quick 应用 精通 Python OpenCV4 零、前言 第 1 部分:OpenCV 4 和 Python 简介 一、设置 OpenCV 二、Ope
以上章节采免安装方式,所以安装章节可以直接跳过,节约点时间用springboot整合OpenCV(也可以用maven项目或者简单的java项目),主要是引入一个jar包和库文件,jar跨平台,库文件不跨平台,所以要区分windows和linux,至于工具idea就ok. 环境安装可以参考:springboot免安装整合Opencv兼容windows和linux
OpenCV是一组计算机视觉(CV)库,包含2500多个工具,从经典的机器学习(ML)算法到深度学习和神经网络。这是一个开源解三方库,可以在Apache许可下自由使用、修改和分发。
领取专属 10元无门槛券
手把手带您无忧上云