这是一个关于 pandas 从基础到进阶的练习题系列,来源于 github 上的 guipsamora/pandas_exercises 。这个项目从基础到进阶,可以检验你有多么了解 pandas。
groupby是Pandas在数据分析中最常用的函数之一。它用于根据给定列中的不同值对数据点(即行)进行分组,分组后的数据可以计算生成组的聚合值。
来源:DeepHub IMBA本文约2300字,建议阅读5分钟本文用25个示例详细介绍groupby的函数用法。 groupby是Pandas在数据分析中最常用的函数之一。它用于根据给定列中的不同值对数据点(即行)进行分组,分组后的数据可以计算生成组的聚合值。 如果我们有一个包含汽车品牌和价格信息的数据集,那么可以使用groupby功能来计算每个品牌的平均价格。 在本文中,我们将使用25个示例来详细介绍groupby函数的用法。这25个示例中还包含了一些不太常用但在各种任务中都能派上用场的操作。 这里使用
上次介绍了Pandas的部分操作,包括创建Series,DataFrame以及基本索引,文件保存与读取等。今天我们介绍一下Pandas常用的其他功能。 首先我们还是随机产生一个数据表,5行3列的数据框。保存到csv文件并读取。 import pandas as pd import numpy as np sample = np.array(np.random.randint(0,100, size=15)) sample_reshape = sample.reshape((5,3)) sample_pd
统计分析是数据分析的重要组成部分,它几乎贯穿整个数据分析的流程。运用统计方法,将定量与定性结合,进行的研究活动叫做统计分析。而pandas是统计分析的重要库。
主要是对数据进行规范化的操作,将数据转换成“适当的”格式,以适用于挖掘任务及算法的需要。
用Python做数据分析光是掌握numpy和matplotlib可不够,Pandas是必须要掌握的一个重点,numpy虽然能够帮我们处理处理数值型数据,但是这还不够,很多时候,我们的数据除了数值之外,还有字符串,还有时间序列等,比如:我们通过爬虫获取到了存储在数据库中的数据。
本期的主题是关于python的一个数据分析工具pandas的,归纳整理了一些工作中常用到的pandas使用技巧,方便更高效地实现数据分析。文章很短,不用收藏就能Get~
归纳整理了一些工作中常用到的pandas使用技巧,方便更高效地实现数据分析。文章很短,不用收藏就能Get~
先按Mt列进行分组,然后对分组之后的数据框使用idxmax函数取出Count最大值所在的列,再用iloc位置索引将行取出。有重复值的情况
本文翻译自文章: Pandas Cheat Sheet - Python for Data Science,同时添加了部分注解。 对于数据科学家,无论是数据分析还是数据挖掘来说,Pandas是一个非常重要的Python包。它不仅提供了很多方法,使得数据处理非常简单,同时在数据处理速度上也做了很多优化,使得和Python内置方法相比时有了很大的优势。 如果你想学习Pandas,建议先看两个网站。 (1)官网: Python Data Analysis Library (2)十分钟入门Pandas: 10 Mi
本文中记录Pandas操作技巧,包含: 导入数据 导出数据 查看、检查数据 数据选取 数据清洗 数据处理:Filter、Sort和GroupBy 数据合并 常识 # 导入pandas import pandas as pd # axis参数:0代表行,1代表列 导入数据 pd.read_csv(filename) # 从CSV文件导入数据 pd.read_table(filename) # 从限定分隔符的文本文件导入数据 pd.read_excel(filename) # 从Excel文件导入数据
获取行操作df.loc[3:6]获取列操作df['rowname']取两列df[['a_name','bname']] ,里面需要是一个 list 不然会报错增加一列df['new']=list([...])对某一列除以他的最大值df['a']/df['a'].max()排序某一列df.sorted_values('a',inplace=True,ascending=True) , inplace 表示排序的时候是否生成一个新的 dataFrame , ascending=True 表示升序,默认为升序,如果存在缺失的补值( Nan ),排序的时候会将其排在末尾
凭借其广泛的功能,Pandas 对于数据清理、预处理、整理和探索性数据分析等活动具有很大的价值。
sort_values主要是对某个属性中出现的各个元素进行排序,默认是升序,字母是a-z
Josh Devlin 2017年2月21日 Pandas可以说是数据科学最重要的Python包。 它不仅提供了很多方法和函数,使得处理数据更容易;而且它已经优化了运行速度,与使用Python的内置函数进行数值数据处理相比,这是一个显著的优势。 刚开始学习pandas时要记住所有常用的函数和方法显然是有困难的,所以在Dataquest(https://www.dataquest.io/)我们主张查找pandas参考资料(http://pandas.pydata.org/pandas-docs/stab
Pandas是python的一个数据分析包,最初由AQR Capital Management于2008年4月开发,并于2009年底开源出来,目前由专注于Python数据包开发的PyData开发team继续开发和维护,属于PyData项目的一部分。Pandas最初被作为金融数据分析工具而开发出来,因此,pandas为时间序列分析提供了很好的支持。 Pandas的名称来自于面板数据(panel data)和python数据分析(data analysis)。panel data是经济学中关于多维数据集的一个术
1、最大值、最小值 max:获取一个数组中最大元素 min:获取一个数组中最小元素
选择单列。可以直接用列名选择,也可以通过ix、iloc、loc方法进行选择行、列。
在使用 Pandas 进行数据分析时,我们需要经常进行查询和统计分析。 但是Pandas 是如何进行查询和统计分析得嘞, let’s go :
“软件工程师阅读教科书作为参考时不会记住所有的东西,但是要知道如何快速查找重·要的知识点。”
Pandas是Python中常用的数据处理和分析库,它提供了高效、灵活且易于使用的数据结构和数据分析工具。
用pandas利用df.groupby.agg() 做聚合运算时遇到一个问题:产生了列方向上的两级索引,且需要删除一级索引。具体代码如下:
今天我们继续推出一篇数据处理常用的操作技能汇总:灵活使用pandas.groupby()函数,实现数据的高效率处理,主要内容如下:
Python数据分析pandas之分组统计透视表
导读:Pandas是Python数据分析的利器,也是各种数据建模的标准工具。本文带大家入门Pandas,将介绍Python语言、Python数据生态和Pandas的一些基本功能。
pandas的操作上千种,但对于数据分析的使用掌握常用的操作就可以应付了,更多的操作可以参考pandas官网。
该文介绍了如何使用Pandas的apply函数对人口普查数据进行分组汇总和自定义汇总,并使用可视化工具展示数据。同时,还介绍了一种方法来找出每个州人口最多的3个县,以及2010年至2015年间人口变化幅度最大的县。
导读:Pandas 是一个强大的分析结构化数据的工具集,它的使用基础是 Numpy(提供高性能的矩阵运算),用于数据挖掘和数据分析,同时也提供数据清洗功能。
在阅读本文时,我建议你阅读每个你不了解的函数的文档字符串(docstrings)。简单的 Google 搜索和几秒钟 Pandas 文档的阅读,都会使你的阅读体验更加愉快。
这篇推文还是python-matplotlib 散点图的绘制过程,涉及到的内容主要包括matplotlib ax.scatter()、hlines()、vlines()、text()、添加小图片和定制化散点图图例样式等。前期的数据处理部分还是pandas、numpy库的灵活 应用(这里主要涉及可视化的设置,数据处理、分析部分后期会专门开设专辑进行教程讲解。当然大家有不理解地方可以后台和我交流)
本文总结Python语言做数据探索的知识。 类似R语言做数据探索,利用Python语言做数据探索。 1 数据导入 2 数据类型变换 3 数据集变换 4 数据排序 5 数据可视化 6 列联表 7 数据抽
1、Hive窗口函数 我们先来介绍一下Hive中几个常见的窗口函数,row_number(),lag()和lead()。 row_number() 该函数的格式如下: row_Number() OVER (partition by 分组字段 ORDER BY 排序字段 排序方式asc/desc) 简单的说,我们使用partition by后面的字段对数据进行分组,在每个组内,使用ORDER BY后面的字段进行排序,并给每条记录增加一个排序序号。 lag() 该函数的格式如下: lag(字段名,N) over
用Python解决下面的问题:读取data.csv,里面有学号、姓名、年龄、身高,请输出同样年龄时,身高的最大值,以及对应的学号和姓名
描述性统计分析,用来概括事物整体状况以及事物间联系,即事物的基本特征,以发现内在规律的统计分析方法。
为什么说第二好用呢?做人嘛,最重要的就是谦虚,做函数也是一样的,而apply就是这样一个优雅而谦虚的函数。
注意:由于NaN的存在,B列初始的数据类型是float,如果要变成整数,使用astype转换即可。
先把pandas的官网给出来,有找不到的问题,直接官网查找:https://pandas.pydata.org/
Pandas是一个Python数据分析库,它为数据操作提供了高效且易于使用的工具,可以用于处理来自不同来源的结构化数据。Pandas提供了DataFrame和Series两种数据结构,使得数据操作和分析更加方便和灵活。本文将介绍Pandas的一些高级知识点,包括条件选择、聚合和分组、重塑和透视以及时间序列数据处理等方面。
这一系列的对应代码,大家可以在我共享的colab上把玩, ? https://colab.research.google.com/drive/1WhKCNkx6VnX1TS8uarTICIK2Vi
corr()函数默认计算的是两个变量之间的皮尔逊相关系数。该系数用于描述两个变量间线性相关性的强弱,取值范围为[-1,1]。系数为正值表示存在正相关性,为负值表示存在负相关性,为0表示不存在线性相关性。系数的绝对值越大,说明相关性越强。- 上表中第1行第2列的数值0.982321,表示的就是年销售额与年广告费投入额的皮尔逊相关系数,其余单元格中数值的含义依此类推。需要说明的是,上表中从左上角至右下角的对角线上的数值都为1,这个1其实没有什么实际意义,因为它表示的是变量自身与自身的皮尔逊相关系数,自然是1。- 从上表可以看到,年销售额与年广告费投入额、成本费用之间的皮尔逊相关系数均接近1,而与管理费用之间的皮尔逊相关系数接近0,说明年销售额与年广告费投入额、成本费用之间均存在较强的线性正相关性,而与管理费用之间基本不存在线性相关性。前面通过直接观察法得出的结论是比较准确的。- 第2行代码中的read_excel()是pandas模块中的函数,用于读取工作簿数据。3.5.2节曾简单介绍过这个函数,这里再详细介绍一下它的语法格式和常用参数的含义。- read_excel(io,sheet_name=0,header=0,names=None,index_col=None,usecols=None,squeeze=False,dtype=None)
思路还是类似,可能具体写法上要做一些修改,比如方法1和2要修改max算法,方法3要自己实现一个返回index的方法。不管怎样,groupby之后,每个分组都是一个dataframe。
*从本篇开始所有文章的数据和代码都已上传至我的github仓库:https://github.com/CNFeffery/DataScienceStudyNotes
领取专属 10元无门槛券
手把手带您无忧上云