首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

R中的二维核密度图和透明轮廓填充

是一种用于可视化数据分布的方法。它可以帮助我们理解数据的密度分布情况,并且可以通过透明轮廓填充来突出显示高密度区域。

二维核密度图是一种通过在数据点周围创建核函数并将其叠加以估计密度的方法。它可以用来显示数据点在二维空间中的分布情况。核密度图可以帮助我们发现数据的聚集区域和稀疏区域,从而更好地理解数据的分布特征。

透明轮廓填充是在二维核密度图的基础上添加的一种可视化技术。它通过在核密度图上使用透明度来表示密度的高低,从而突出显示高密度区域。透明轮廓填充可以帮助我们更清晰地看到数据的密度分布情况,特别是在有重叠区域的情况下。

在R中,我们可以使用density()函数计算二维核密度估计,并使用filled.contour()函数创建透明轮廓填充图。下面是一个示例代码:

代码语言:txt
复制
# 导入必要的包
library(MASS)

# 生成示例数据
x <- rnorm(1000)
y <- rnorm(1000)

# 计算二维核密度估计
dens <- kde2d(x, y)

# 创建透明轮廓填充图
filled.contour(dens$x, dens$y, dens$z, color.palette = heat.colors)

在这个例子中,我们使用了kde2d()函数来计算二维核密度估计,并将结果传递给filled.contour()函数来创建透明轮廓填充图。color.palette参数用于指定填充颜色的调色板。

对于腾讯云相关产品和产品介绍链接地址,由于要求不能提及具体的云计算品牌商,我无法提供相关链接。但是,腾讯云提供了丰富的云计算服务,包括云服务器、云数据库、云存储等,您可以通过访问腾讯云官方网站来了解更多信息。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

Python 数据可视化之密度散点图 Density Scatter Plot

密度散点图(Density Scatter Plot),也称为密度密度估计散点图,是一种数据可视化技术,主要用于展示大量数据点在二维平面上分布情况。...通过平滑处理来填补单独观测值之间空白,从而生成一个连续概率密度函数。KDE 通常涉及到选择一个函数(如高斯带宽(控制平滑程度参数)。...探索数据分布:通过颜色编码表示不同密度级别,密度散点图能够揭示出数据可能隐含各种模式、聚类或趋势。这对于探索性数据分析尤其有用,因为它可以帮助研究人员发现未被预见到关系或行为模式。...高灵活性密度散点图支持多种定制选项,比如调整颜色映射、透明度、标记大小等,以适应不同类型规模数据集。此外,还可以结合其他类型可视化技术(比如轮廓线或网格)来增强表达能力。...可视化结果如下所示: ️ 参考链接: 使用 Python 绘制散点密度(用颜色标识密度) 复现顶刊 RSE 散点密度验证(附代码)

1.6K00
  • (数据科学学习手札83)基于geopandas空间数据分析——geoplot篇(下)

    对象 hue:传入对应df中指定列名或外部序列数据,用于映射面的颜色,默认为None即不进行设色 cmap:matplotlibcmap使用方式一致,用于控制色彩映射方案 alpha:控制全局色彩透明度...2.2 Kdeplot geoplotkdeplot()对应密度,其基于seabornkdeplot(),通过对矢量点数据分布计算密度估计,从而对点数据进行可视化,可用来展示点数据空间分布情况...使用方式一致,用于控制色彩映射方案 clip:GeoSeries型,用于为初始生成密度图像进行蒙版裁切,下文会举例说明 extent:元组型,用于传入左下角右上角经纬度信息来设置地图空间范围,...shade:bool型,当设置为False时只有等值线被绘制出,当设置为True时会绘制密度填充 shade_lowest:bool型,控制是否对概率密度最低层次进行填充,下文会举例说明 n_levels...8   随之而来问题是整幅图像都被填充,为了裁切出密度图像地区轮廓,将底层行政区面数据作为clip参数传入,便得到理想效果: ?

    1.8K30

    详解seaborn可视化kdeplot、rugplot、distplot与jointplot

    ,双变量作为第2个输入变量 shade:bool型变量,用于控制是否对密度估计曲线下面积进行色彩填充,True代表填充 vertical:bool型变量,在单变量输入时有效,用于控制是否颠倒x-y轴位置...,默认为True cbar:bool型变量,用于控制是否在绘制二维密度估计时在图像右侧边添加比色卡 color:字符型变量,用于控制密度曲线色彩,同plt.plot()color参数,如'r'...) 加上红色填充颜色,并禁止图例显示: ax = sns.kdeplot(iris.petal_width,shade=True,color='r') 修改为密度分布: ax = sns.kdeplot...') ax2 = sns.kdeplot(virginica.petal_width,label='virginica.petal_width') 在同一个子图中绘制两个不同二维总体密度估计:...绘图部分,否则纵轴依然显示密度),利用hist_kws传入字典调整直方图部分色彩透明度,利用rug_kws传入字典调整rugplot部分小短条色彩: ax = sns.distplot(iris.petal_length

    4.7K32

    基于geopandas空间数据分析—geoplot篇(下)

    对象 hue:传入对应df中指定列名或外部序列数据,用于映射面的颜色,默认为None即不进行设色 cmap:matplotlibcmap使用方式一致,用于控制色彩映射方案 alpha:控制全局色彩透明度...2.2 Kdeplot geoplotkdeplot()对应密度,其基于seabornkdeplot(),通过对矢量点数据分布计算密度估计,从而对点数据进行可视化,可用来展示点数据空间分布情况...shade:bool型,当设置为False时只有等值线被绘制出,当设置为True时会绘制密度填充 shade_lowest:bool型,控制是否对概率密度最低层次进行填充,下文会举例说明 n_levels...=True,即可对空白区域进行填充8 随之而来问题是整幅图像都被填充,为了裁切出密度图像地区轮廓,将底层行政区面数据作为clip参数传入,便得到理想效果: 9 2.3 Sankey...即不进行设色 cmap:matplotlibcmap使用方式一致,用于控制色彩映射方案 alpha:控制全局色彩透明度 scheme:作用类似geopandasscheme参数,用于控制分层设色

    1.6K50

    (数据科学学习手札62)详解seabornkdeplot、rugplot、distplot与jointplot

    单变量时不输入,双变量作为第2个输入变量   shade:bool型变量,用于控制是否对密度估计曲线下面积进行色彩填充,True代表填充   vertical:bool型变量,在单变量输入时有效,用于控制是否颠倒...,默认为True   cbar:bool型变量,用于控制是否在绘制二维密度估计时在图像右侧边添加比色卡   color:字符型变量,用于控制密度曲线色彩,同plt.plot()color参数,...如'r'代表红色   cmap:字符型变量,用于控制密度区域递进色彩方案,同plt.plot()cmap参数,如'Blues'代表蓝色系   n_levels:int型,在而为变量时有效,用于控制密度估计区间个数...在同一个子图中绘制两个不同二维总体密度估计: ax1 = sns.kdeplot(setosa.sepal_width,setosa.sepal_length,...修改norm_hist参数为False使得纵轴显示不再是密度而是频数(注意这里必须关闭kdefit绘图部分,否则纵轴依然显示密度),利用hist_kws传入字典调整直方图部分色彩透明度,利用rug_kws

    3.1K50

    数据可视化(7)-Seaborn系列 | 函数密度估计kdeplot()

    函数密度估计主要用来拟合并绘制单变量或双变量密度估计值。...cbar_kws=None, ax=None, **kwargs) 参数解读 shade:阴影:bool类型 作用:设置曲线下方是否添加阴影,如果为True则在曲线下方添加阴影 (如果数据为双变量则使用填充轮廓绘制...[0, 2], [(1, .5), (.5, 1)] x, y = np.random.multivariate_normal(mean, cov, size=50).T """ 案例1: 绘制基本单变量密度曲线图...= [0, 2], [(1, .5), (.5, 1)] x, y = np.random.multivariate_normal(mean, cov, size=50).T """ 案例 4: 使用轮廓填充...[0, 2], [(1, .5), (.5, 1)] x, y = np.random.multivariate_normal(mean, cov, size=50).T """ 案例5: 使用更多轮廓级别不同调色板

    4K11

    基于geopandas空间数据分析—geoplot篇(上)

    ()) # 叠加密度图层 ax = gplt.kdeplot(df=nyc_collision_factors, cmap='Reds',...:用于设定散点形状 alpha:控制全局色彩透明度 linewidths:控制散点轮廓宽度 edgecolors:控制散点轮廓颜色 legend:bool型,用于控制是否显示图例 legend_var...:控制线颜色 facecolor:控制填充颜色 linestyle:控制线样式,详情见本系列文章前作基础可视化篇5 hatch:控制填充阴影纹路,详情见本系列文章前作基础可视化篇7 下面我们就对纽约区划面数据进行举例说明...在分析了原图R代码之后,我们将整幅拆解分为四个图层。...数据预处理部分分步骤代码较多,不便在文章全盘放出,你可以到文章开头Github仓库对应路径下查看下载。

    2.2K30

    40000字 Matplotlib 实操干货,真的全!

    4.密度轮廓 有些情况下,我们需要在二维图表中使用轮廓或颜色区域来展示三维数据(可以设想等高线地图或温度分布)。...我们可以将上面的改为填充轮廓来解决这个问题,使用plt.contourf()函数(注意函数名最后有个 f,代表填充 fill),这个函数语法基本上与plt.contour()保持一致。...例如,下例我们使用了半透明背景图像(通过alpha参数设置透明度),然后在背景图层之上绘制了轮廓,并带有每个轮廓数值标签(使用plt.clabel()函数绘制标签): contours = plt.contour...密度估计 另外一个常用来统计多维数据密度工具是密度估计(KDE)。这目前我们只需要知道 KDE 被认为是一种可以用来填补数据空隙并补充上平滑变化数据方法就足够了。...三维轮廓 类似于我们在[密度轮廓]中介绍内容,mplot3d也包含着能够创建三维浮雕图像工具。

    10.3K21

    (数据科学学习手札82)基于geopandas空间数据分析——geoplot篇(上)

    ()) # 叠加密度图层 ax = gplt.kdeplot(df=nyc_collision_factors, cmap='Reds',...,传入geoplot.crs对象 hue:当需要根据df某列或外部其他序列数据来映射散点色彩时,可传入对应df中指定列名或外部序列数据,默认为None即不进行设色 cmap:matplotlib...:用于设定散点形状 alpha:控制全局色彩透明度 linewidths:控制散点轮廓宽度 edgecolors:控制散点轮廓颜色 legend:bool型,用于控制是否显示图例 legend_var...alpha:控制全局色彩透明度 linewidths:控制线宽度 edgecolors:控制线颜色 facecolor:控制填充颜色 linestyle:控制线样式,详情见本系列文章前作基础可视化篇...在分析了原图R代码之后,我们将整幅拆解分为四个图层,1是柏林最边缘灰色轮廓,这其实是整个柏林区域面数据向外生成缓冲区之后效果;2是柏林各行政区区划,3是柏林内部部分OSM路网,构成了图中依稀可见类似纹路要素

    2.3K20

    学习Matplotlib看这一份笔记就够了!

    4.密度轮廓 有些情况下,我们需要在二维图表中使用轮廓或颜色区域来展示三维数据(可以设想等高线地图或温度分布)。...我们可以将上面的改为填充轮廓来解决这个问题,使用plt.contourf()函数(注意函数名最后有个 f,代表填充 fill),这个函数语法基本上与plt.contour()保持一致。...例如,下例我们使用了半透明背景图像(通过alpha参数设置透明度),然后在背景图层之上绘制了轮廓,并带有每个轮廓数值标签(使用plt.clabel()函数绘制标签): contours = plt.contour...密度估计 另外一个常用来统计多维数据密度工具是密度估计(KDE)。这目前我们只需要知道 KDE 被认为是一种可以用来填补数据空隙并补充上平滑变化数据方法就足够了。...三维轮廓 类似于我们在[密度轮廓]中介绍内容,mplot3d也包含着能够创建三维浮雕图像工具。

    10.7K11

    全文 40000 字,最强(全) Matplotlib 实操指南

    4.密度轮廓 有些情况下,我们需要在二维图表中使用轮廓或颜色区域来展示三维数据(可以设想等高线地图或温度分布)。...我们可以将上面的改为填充轮廓来解决这个问题,使用plt.contourf()函数(注意函数名最后有个 f,代表填充 fill),这个函数语法基本上与plt.contour()保持一致。...例如,下例我们使用了半透明背景图像(通过alpha参数设置透明度),然后在背景图层之上绘制了轮廓,并带有每个轮廓数值标签(使用plt.clabel()函数绘制标签): contours = plt.contour...密度估计 另外一个常用来统计多维数据密度工具是密度估计(KDE)。这目前我们只需要知道 KDE 被认为是一种可以用来填补数据空隙并补充上平滑变化数据方法就足够了。...虽然三维效果在静态图像难以显示,你可以使用交互式视图来获得更佳三维直观效果。 三维轮廓 类似于我们在[密度轮廓]中介绍内容,mplot3d也包含着能够创建三维浮雕图像工具。

    6.2K30

    收藏!!!学习Matplotlib看这一份笔记就够了!

    4.密度轮廓 有些情况下,我们需要在二维图表中使用轮廓或颜色区域来展示三维数据(可以设想等高线地图或温度分布)。...我们可以将上面的改为填充轮廓来解决这个问题,使用plt.contourf()函数(注意函数名最后有个 f,代表填充 fill),这个函数语法基本上与plt.contour()保持一致。...例如,下例我们使用了半透明背景图像(通过alpha参数设置透明度),然后在背景图层之上绘制了轮廓,并带有每个轮廓数值标签(使用plt.clabel()函数绘制标签): contours = plt.contour...密度估计 另外一个常用来统计多维数据密度工具是密度估计(KDE)。这目前我们只需要知道 KDE 被认为是一种可以用来填补数据空隙并补充上平滑变化数据方法就足够了。...三维轮廓 类似于我们在[密度轮廓]中介绍内容,mplot3d也包含着能够创建三维浮雕图像工具。

    8.2K20

    40000字 Matplotlib 实操干货,真的全!

    4.密度轮廓 有些情况下,我们需要在二维图表中使用轮廓或颜色区域来展示三维数据(可以设想等高线地图或温度分布)。...我们可以将上面的改为填充轮廓来解决这个问题,使用plt.contourf()函数(注意函数名最后有个 f,代表填充 fill),这个函数语法基本上与plt.contour()保持一致。...例如,下例我们使用了半透明背景图像(通过alpha参数设置透明度),然后在背景图层之上绘制了轮廓,并带有每个轮廓数值标签(使用plt.clabel()函数绘制标签): contours = plt.contour...密度估计 另外一个常用来统计多维数据密度工具是密度估计(KDE)。这目前我们只需要知道 KDE 被认为是一种可以用来填补数据空隙并补充上平滑变化数据方法就足够了。...虽然三维效果在静态图像难以显示,你可以使用交互式视图来获得更佳三维直观效果。 三维轮廓 类似于我们在[密度轮廓]中介绍内容,mplot3d也包含着能够创建三维浮雕图像工具。

    8K10

    40000字 Matplotlib 实操干货,真的全!

    4.密度轮廓 有些情况下,我们需要在二维图表中使用轮廓或颜色区域来展示三维数据(可以设想等高线地图或温度分布)。...我们可以将上面的改为填充轮廓来解决这个问题,使用plt.contourf()函数(注意函数名最后有个 f,代表填充 fill),这个函数语法基本上与plt.contour()保持一致。...例如,下例我们使用了半透明背景图像(通过alpha参数设置透明度),然后在背景图层之上绘制了轮廓,并带有每个轮廓数值标签(使用plt.clabel()函数绘制标签): contours = plt.contour...密度估计 另外一个常用来统计多维数据密度工具是密度估计(KDE)。这目前我们只需要知道 KDE 被认为是一种可以用来填补数据空隙并补充上平滑变化数据方法就足够了。...虽然三维效果在静态图像难以显示,你可以使用交互式视图来获得更佳三维直观效果。 三维轮廓 类似于我们在[密度轮廓]中介绍内容,mplot3d也包含着能够创建三维浮雕图像工具。

    7.9K30

    11种 Matplotlib 科研论文图表实现 !!

    4、密度轮廓 有些情况下,我们需要在二维图表中使用轮廓或颜色区域来展示三维数据(可以设想等高线地图或温度分布)。...我们可以将上面的改为填充轮廓来解决这个问题,使用 plt.contourf() 函数(注意函数名最后有个 f,代表填充 fill),这个函数语法基本上与 plt.contour() 保持一致。...例如,下例我们使用了半透明背景图像(通过alpha参数设置透明度),然后在背景图层之上绘制了轮廓,并带有每个轮廓数值标签(使用plt.clabel() 函数绘制标签): contours = plt.contour...密度估计 另外一个常用来统计多维数据密度工具是密度估计(KDE)。目前我们只需要知道 KDE 被认为是一种可以用来填补数据空隙并补充上平滑变化数据方法就足够了。...虽然三维效果在静态图像难以显示,你可以使用交互式视图来获得更佳三维直观效果。 (2)三维轮廓 类似于我们在[密度轮廓]中介绍内容,mplot3d 也包含着能够创建三维浮雕图像工具。

    24710

    超全!40000字 Matplotlib 实战

    4.密度轮廓 有些情况下,我们需要在二维图表中使用轮廓或颜色区域来展示三维数据(可以设想等高线地图或温度分布)。...我们可以将上面的改为填充轮廓来解决这个问题,使用plt.contourf()函数(注意函数名最后有个 f,代表填充 fill),这个函数语法基本上与plt.contour()保持一致。...例如,下例我们使用了半透明背景图像(通过alpha参数设置透明度),然后在背景图层之上绘制了轮廓,并带有每个轮廓数值标签(使用plt.clabel()函数绘制标签): contours = plt.contour...密度估计 另外一个常用来统计多维数据密度工具是密度估计(KDE)。这目前我们只需要知道 KDE 被认为是一种可以用来填补数据空隙并补充上平滑变化数据方法就足够了。...三维轮廓 类似于我们在[密度轮廓]中介绍内容,mplot3d也包含着能够创建三维浮雕图像工具。

    7.9K30

    可能是全网最全Matplotlib可视化教程

    4.密度轮廓 有些情况下,我们需要在二维图表中使用轮廓或颜色区域来展示三维数据(可以设想等高线地图或温度分布)。...我们可以将上面的改为填充轮廓来解决这个问题,使用plt.contourf()函数(注意函数名最后有个 f,代表填充 fill),这个函数语法基本上与plt.contour()保持一致。...例如,下例我们使用了半透明背景图像(通过alpha参数设置透明度),然后在背景图层之上绘制了轮廓,并带有每个轮廓数值标签(使用plt.clabel()函数绘制标签): contours = plt.contour...密度估计 另外一个常用来统计多维数据密度工具是密度估计(KDE)。这目前我们只需要知道 KDE 被认为是一种可以用来填补数据空隙并补充上平滑变化数据方法就足够了。...虽然三维效果在静态图像难以显示,你可以使用交互式视图来获得更佳三维直观效果。 三维轮廓 类似于我们在[密度轮廓]中介绍内容,mplot3d也包含着能够创建三维浮雕图像工具。

    8.6K10

    (数据科学学习手札38)ggplot2基本图形简述

    abline()、hline()与vline()   在R基础绘图系统我们可以在已绘制床上通过abline来添加线条,在ggplot2当然也有类似的方法: geom_abline():   ...,我们先从一维说起: geom_density():   R基本绘图系统密度曲线绘制方法很接近: library(ggplot2) data <- data.frame(matrix(rnorm...(aes(colour=..level..)) v   也可以不绘制等高线,将..density..作为fill传入参数,注意这里一定要设置contour为F: # 密度函数,通过fill设置填充颜色数据为密度...= "raster", contour = F) p   或是在透明度alpha上动手脚: # 密度函数:alpha设置填充透明度数据为密度,geom设置绘制栅格 p <- ggplot(data...(aes(label = text), vjust = "inward", hjust = "inward") 2.10 violin()   小提琴是一种功能箱线图类似,但增加了密度估计功能图形

    5.2K20
    领券