今天上班的时候接收到了一个业务方的反馈,说是一个数据库在删除表的时候报错了,我让他截给我日志看看,日志中的内容如下:
这两年一直在做MySQL迁移到PolarDB for MySQL的问题,基本上是迁移一个项目反馈都是好的,优秀的,没有马失前蹄,终于在昨天掉进了陷马坑,MySQL 迁移到 POLARDB FOR MYSQL 后报表任务无法运行,业务强制回滚了。
前文数据库容器化|未来已来我们介绍了基于Kubernetes实现的下一代私有 RDS。其中,调度策略是具体实现时至关重要的一环,它关系到RDS 集群的服务质量和部署密度。那么,RDS 需要怎样的调度策略呢?本文通过数据库的视角结合Kubernetes的源码,分享一下我的理解。
沃趣科技 熊中哲·联合创始人/产品研发团队总监 前文我们介绍了基于 Kubernetes 实现的下一代私有 RDS. 其中, 调度策略是具体实现时至关重要的一环, 它关系到 RDS 集群的服务质量和部
导 语 前文数据库容器化|未来已来我们介绍了基于Kubernetes实现的下一代私有 RDS。其中,调度策略是具体实现时至关重要的一环,它关系到RDS 集群的服务质量和部署密度。那么,RDS 需要怎样的调度策略呢?本文通过数据库的视角结合Kubernetes的源码,分享一下我的理解。 It was the best of times, it was the worst of times。 —by Dickens. 人类从爬行到直立用了几百万年,但是我
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/wzy0623/article/details/80269362
mysql的行的数据和体积等指标,我们可以通过定时任务脚本去采集information_schema.tables然后存到库里面。
•一、MySQL得到研报实体在Oracle中的唯一ID•二、Oracle中过滤时间序列数据•三、CYPHER实现MySQL和Oracle查询语句串联•四、通过apoc.case实现布尔值的判断•五、将查询封装为函数•六、将函数运用在数据过滤查询中•七、总结
今天体验了下MySQL Cloud的一些服务,除了网络卡顿延迟比较大之外,其他的体验还可以,简单来说下这个过程。
日志服务最近在原有 30+ 种数据采集渠道 基础上,新增 MySQL Binlog、MySQL select 等数据库方案,仍然主打快捷、实时、稳定、所见即所得的特点。
最近由于业务需求,需要将公有云RDS(业务库)的大表数据归档至私有云MySQL(历史库),以缩减公有云RDS的体积和成本。
本文通过分析2023年5月15日的腾讯财报数据,从多个方面揭示了腾讯在2023年5月15日所呈现的财务、经营和战略状况。
MySQL 8.0.28开始,新增一个特性,支持监控统计并限制各个连接(会话)的内存消耗,避免大量用户连接因为执行垃圾SQL消耗过多内存,造成可能被OOM kill的风险。
MySQL 慢日志(slow log)是 MySQL DBA 及其他开发、运维人员需经常关注的一类信息。使用慢日志可找出执行时间较长或未走索引等 SQL 语句,为进行系统调优提供依据。 本文将结合一个线上案例,分析如何正确设置 MySQL 慢日志参数和使用慢日志功能,并介绍下网易云 RDS 对 MySQL 慢日志功能的增强。
有赞的基础架构使用了UCloud的基础服务,我们有相当比例的数据库是UCloud的RDS(一部分使用云RDS,一部分使用购买他们的物理服务器自建数据库)。
作者:db匠;链接:developer.aliyun.com/article/72501
文章主要介绍了如何基于元数据进行维表数据的增量抽取和变更。主要包括三个部分:1. 基于元数据定义的维度表数据模型,包括定义的表、字段、数据模型;2. 基于元数据定义的维度表数据抽取,使用SQL语句从源系统中抽取数据;3. 基于元数据定义的维度表数据变更,使用SQL语句对目标系统中的数据进行变更。
我们都知道,随着业务量的增长,数据量也会随之增加,这个时候就需要关注业务大表,因为大表会影响查询性能,DDL变更时间很长,影响业务的可用性,同时导致从库延迟很大,如果业务做了读写分离,导致用户重复操作产生脏数据,例如重复下单。
主从模式对于写少读多的场景确实非常大的优势,但是总会写操作达到瓶颈的时候,导致性能提不上去。
本文介绍了在技术社区中,如何从技术角度、业务角度、架构角度、运维角度等多个维度出发,进行社区技术内容的分类、规划、建设、管理、优化,并阐述了在此过程中的技术选型和社区机制建设。同时,本文还分享了基于机器学习和数据挖掘的技术内容管理方法,以及面向知识图谱、智能问答、科技情报等场景的技术实践。
上一篇详细讲解了如何用Canal和Kafka,将MySQL数据实时全量同步到Greenplum。对照本专题第一篇中图1-1的数据仓库架构,我们已经实现了ETL的实时抽取过程,将数据同步到RDS中。本篇继续介绍如何实现后面的数据装载过程。实现实时数据装载的总体步骤可归纳为:
本文延续上一篇文章 云数据库MySQL导入云数据仓库PostgreSQL最佳实践,继续介绍云数据库MySQL导入云数据仓库PostgreSQL的使用问题。其中描述的问题及解决方法同样适用于 腾讯云 云数据仓库 PostgreSQL(CDWPG)。
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/wzy0623/article/details/80281643
某日下午下班后低峰期,现网MySQL一个库突然报出大量慢sql,状态是 statistics,但是过后拿这些sql去执行的时候,实际很快。处于 statistics 状态的线程有个特征:查询的都是视图,但看监控那个时间段并没有明显的update/detele/insert。
有赞大数据技术应用的早期,我们使用 Sqoop 作为数据同步工具,满足了 MySQL 与 Hive 之间数据同步的日常开发需求。
本文介绍了如何利用Rust语言和Cargo管理大型游戏服务器的程序架构,实现了游戏服务器的模块化设计,并利用Websocket通信机制实现了跨平台的游戏服务器通信。同时,本文还介绍了一些重要的基础概念和技术,包括Rust语言、Cargo、Websocket、游戏服务器、分布式系统、同步复制、负载均衡、Rust设计模式等。通过本文的学习,读者可以掌握利用Rust和Cargo开发高性能、可扩展、跨平台的游戏服务器的程序架构和技巧。
MySQL性能压测或者基准测试看起来很简单,使用sysbench,tpcc工具跑跑拿到数据就好,其实压测是一个技术活儿,尤其是涉及到性能对比的测试,因为不同场景/不同厂商的产品的参数设置不同,测试的结果也不一样。如果不阐明具体的参数配置差异,直接给出压测结果可能给其他人带来误导。
客户需要将华为云rds for MySQL和天翼云rds for MySQL做一个双向同步,当华为云rds宕机的时候,可以切换到天翼云继续提供服务,而且此时,天翼云的数据也可以自动同步到华为云rds,平时只使用华为云的rds,和双A方案有点差异,需要注意的是rds环境不能安装任何的软件,所以,我目前想到的方案有:
之前的percona-toolkit工具集的使用博文里面也写到pt-archiver这个工具的用法,但是不够深入全面。这里补充完善下。
客路旅行(KLOOK)是一家专注于境外目的地旅游资源整合的在线旅行平台,提供景点门票、一日游、特色体验、当地交通与美食预订服务。覆盖全球100个国家及地区,支持12种语言和41种货币的支付系统,与超过10000家商户合作伙伴紧密合作,为全球旅行者提供10万多种旅行体验预订服务。KLOOK数仓RDS数据同步是一个很典型的互联网电商公司数仓接入层的需求。对于公司数仓,约60%以上的数据直接来源与业务数据库,数据库有很大一部分为托管的AWS RDS-MYSQL 数据库,有超100+数据库/实例。RDS直接通过来的数据通过标准化清洗即作为数仓的ODS层,公司之前使用第三方商业工具进行同步,限制为每隔8小时的数据同步,无法满足公司业务对数据时效性的要求,数据团队在进行调研及一系列poc验证后,最后我们选择Debezium+Kafka+Flink+Hudi的ods层pipeline方案,数据秒级入湖,后续数仓可基于近实时的ODS层做更多的业务场景需求。
本篇重点是针对销售订单示例创建并测试数据装载的Kettle作业和转换。在此之前,先简要介绍数据清洗的概念,并说明如何使用Kettle完成常见的数据清洗工作。由于本示例中Kettle在Hadoop上的ETL实现依赖于Hive,所以之后对Hive做一个概括的介绍,包括它的体系结构、工作流程和优化。最后用完整的的Kettle作业演示如何实现销售订单数据仓库的数据转换与装载。
今天把应用部署到AWS上发现后台修改内容提交后程序报错,经过排查发现是更新数据的时候,有张数据表中的一个timestamp类型的字段默认值变成了"0000-00-00 00:00:00.000000"格式,导致解析失败造成的。
本文总结了使用ETL处理大数据技术进行数据仓库建设的过程,包括数据提取、转换和加载(ETL)过程的构建和部署。主要介绍了ETL处理大数据的几种方法和技术,重点讲解了Apache NiFi和Talend这两个流行的开源ETL工具在大数据环境中的使用。
我们知道这种监控平台的数据特征一般都是时间序列数据(简称 时序数据),那么相应的这些数据最好是存储在时序数据库中,目前主流的时序数据库有InfluxDB、OpenTSDB、Graphite、TimescaleDB等。其中,InfluxDB是目前监控领域使用较多的时序数据库,并且基于InfluxDB有一套完善的开源解决方案 —— TICK Stack,如下图所示:
MySQL的配置文件,想必大家都不陌生,今天再来说说配置文件中的一些常用配置,并非最合理的配置,仅供参考,只有了解自己的生产环境,才能根据环境找到最适合你的配置文件参数。
环境准备 自建MySQL环境主机 主机:iZbp1e*****krn92qrx0Z 内网ip: 10.26.254.217 客户端ecs主机 主机:iZbp1e6*****zkrn92qrwzZ 内网ip: 10.24.236.231 说明 说明:mysql的account的组成为’user’@’host’ 常见问题分析 ERROR 1045 (28000) 现象描述 ERROR 1045 (28000): Access denied for user 'testcon'@'10.24.236.231' (
1、 S3(Simple Storage Service) a) 对象存储服务 b) 存储任意类型文件 c) 存储桶:可控制对存储桶的访问权限,名称全局唯一,最多100个 d) 对象:单个对象最多5TB e) 对象键:标识唯一 f) S3的存储桶和S3默认私有,只有资源拥有者可访问
线上的数据库,开发可以直接navicat软件直接操作。一旦发生数据泄露,后果严重。需要禁止使用navicat,使用命令行操作,并且能记录每个开发执行的SQL语句。
在一个风和日丽的下午,姜同学正在研究动态规划算法,突然被临时传递了一个需求,大致就是测试的同学想要做自动化测试。具体的细节略过,姜同学认为需求还比较合理,可以做。要求如下: ● 无损备份线上数据库到文件 ● 支持表级备份 ● 支持字段脱敏 ● 支持版本管理 ● 支持一键还原
下载 MySQL for Python,最新版 MySQL-python-1.2.4b4.tar.gz
最近遇到一个关于MySQL单表过大的问题,该表存放的主要是日志文件,且其中有一个字段存放的数据过大,导致占用空间过大以及查询效率的降低,这种设计其实是不合理的。目前该表占用1.2T容量,数据量超过3亿条,而这个RDS数据库的容量总共就2T,且由于种种原因无法扩容,迫不得已急需给出解决方案。
云数据库的RDS 产品,在传统开源的系列里面大致可以选择的是 POSTGRESQL 和 MYSQL 两种,诚然在RDS 的里面大部分产品最终的选择还是MYSQL ,今天不想讨论产品的量,而是想讨论以下产品的难度,RDS 产品在 POSTGRESQL 和 MYSQL 两种产品的难度问题。
五、快照 前面实验说明了处理维度的扩展。本节讨论两种事实表的扩展技术。 有些用户,尤其是管理者,经常要看某个特定时间点的数据。也就是说,他们需要数据的快照。周期快照和累积快照是两种常用的事实表扩展技术。 周期快照是在一个给定的时间对事实表进行一段时期的总计。例如,一个月销售订单周期快照汇总每个月底时总的销售订单金额。 累积快照用于跟踪事实表的变化。例如,数据仓库可能需要累积(存储)销售订单从下订单的时间开始,到订单中的商品被打包、运输和到达的各阶段的时间点数据来跟踪订单生命周期的进展情况。用户可能要取得在某个给定时间点,销售订单处理状态的累积快照。 下面说明周期快照和累积快照的细节问题。 1. 周期快照 下面以销售订单的月底汇总为例说明如何实现一个周期快照。 首先需要添加一个新的事实表。下图中的模式显示了一个名为month_end_sales_order_fact的新事实表。
遇到一个诡异的问题,在固定的 VPC 环境里运行了一年的 ECS 机器,突然连不上 RDS 数据库,而这个问题在早些时候,也曾在另外一台机器上出现过。
MySQL在2016年仍然保持强劲的数据库流行度增长趋势。越来越多的客户将自己的应用建立在MySQL数据库之上,甚至是从Oracle迁移到MySQL上来。但也存在部分客户在使用MySQL数据库的过程中遇到一些比如响应时间慢,CPU打满等情况。阿里云RDS专家服务团队帮助云上客户解决过很多紧急问题。现将《ApsaraDB专家诊断报告》中出现的部分常见SQL问题总结如下,供大家参考。
•每个任务都需要获取锁然后执行数据构建逻辑,不管构建逻辑是否成功执行TASK结束时必须释放锁•[NODE-TASK]负责锁的node_check-point更新以及后续任务的rel_check_point同步•[REL-TASK]负责node_check-point的回滚和任务状态同步rel_check_point=node_check_point
领取专属 10元无门槛券
手把手带您无忧上云