首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Sklearn线性回归给我不准确的读数?

Sklearn线性回归是一个常用的机器学习算法,用于建立线性回归模型并进行预测。然而,如果Sklearn线性回归给出不准确的读数,可能有以下几个原因:

  1. 数据质量问题:线性回归模型对数据的质量要求较高,如果输入的数据存在异常值、缺失值或者噪声较多,可能会导致模型预测结果不准确。解决方法是对数据进行清洗和预处理,包括异常值处理、缺失值填充和噪声过滤等。
  2. 特征选择问题:线性回归模型对特征的选择和组合非常敏感,如果选择的特征不具有代表性或者特征之间存在多重共线性,可能会导致模型预测结果不准确。解决方法是通过特征工程技术进行特征选择和组合,包括相关性分析、主成分分析等。
  3. 模型参数问题:线性回归模型的参数需要通过训练数据进行估计,如果训练数据量较小或者模型参数初始化不合理,可能会导致模型预测结果不准确。解决方法是增加训练数据量、调整模型参数初始化策略或者使用正则化技术进行模型优化。
  4. 模型假设问题:线性回归模型基于一系列假设,包括线性关系、独立同分布等,如果数据不符合这些假设,可能会导致模型预测结果不准确。解决方法是根据实际情况调整模型假设或者使用其他适合的机器学习算法。

对于Sklearn线性回归给出不准确的读数,可以尝试以上方法进行排查和解决。另外,腾讯云提供了一系列与机器学习和数据分析相关的产品和服务,例如腾讯云机器学习平台(https://cloud.tencent.com/product/tcmlp)、腾讯云数据仓库(https://cloud.tencent.com/product/dw)、腾讯云人工智能开放平台(https://cloud.tencent.com/product/aiopen)等,可以帮助用户进行数据处理、模型训练和预测等任务。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

sklearn线性逻辑回归和非线性逻辑回归实现

线性逻辑回归 本文用代码实现怎么利用sklearn来进行线性逻辑回归计算,下面先来看看用到数据。 ? 这是有两行特征数据,然后第三行是数据标签。...非线性逻辑回归线性逻辑回归意味着决策边界是曲线,和线性逻辑回归原理是差不多,这里用到数据是datasets自动生成, ? ?...看一下准确率,98%,说明算比较成功,准确率很高。 ? ?...线性逻辑回归和非线性逻辑回归用到代价函数都是一样,原理相同,只不过是预估函数复杂度不一样,非线性逻辑回归要对数据进行多项式处理,增加数据特征量。...到此这篇关于sklearn线性逻辑回归和非线性逻辑回归实现文章就介绍到这了,更多相关sklearn线性逻辑回归和非线性逻辑回归内容请搜索ZaLou.Cn以前文章或继续浏览下面的相关文章希望大家以后多多支持

1.5K50

基于sklearn线性回归器理论代码实现

理论 线性回归器 相比于线性分类器,线性回归器更加自然。...回归任务label是连续变量(不像分类任务label是离散变量),线性回归器就是直接通过权值与输入对应相乘再相加直接计算出结果$$y = w^{T}*x + b$$ 其中,w为权值,x是输入,y是输出...回归优化 与分类器类似,回归器也是通过梯度优化,一般来说分类问题常用均方误差函数来标定结果质量(即代价函数)$$L(w,b) = \sum (y - y')$$ 其中y为模型输出,y'为期望值...reshape(-1) y_test = ss_y.transform(y_test.reshape(-1,1)).reshape(-1) print(y_train.shape) (379,) 模型训练 线性回归模型...(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False) SGD回归模型 from sklearn.linear_model import

90370
  • Python机器学习教程—线性回归实现(不调库和调用sklearn库)

    本文尝试使用两个版本python代码,一个是不调用sklearn库版本,另一个是调用sklearn库版本 ---- 线性回归介绍 什么是线性回归?...那么线性回归中最难部分也就是模型训练部分——怎么寻找到最适合斜率和截距,也就是公式中 线性回归实现(不调用sklearn库) 首先设定数据,是员工工龄(年限)对应薪水(千元)数据,使用散点图观察一下大致是否符合线性回归情况...',linewidth=2,label='Regression Line') 结果如下图  线性回归实现(调用sklearn库) 真正在应用上,可以直接使用pythonsklearn库中函数,只需几行代码就可完成线性回归...sklearn提供线性回归相关API 整个线性回归训练过程都已在model中定义好,只需将训练数据放在model.fit()中就可以自动去进行训练,而将要预测数据放到predict()中即可。...调用库函数进行多元线性回归 上面所举例子是一元线性回归,那么与之类比多元线性回归,也就是考虑x1,x2,x3...这样多个特征对输出y影响和它们之间关系。

    1.4K40

    机器学习-对数几率回归(逻辑回归)算法

    找一个单调可微函数将分类任务中真实标记与线性回归模型预测值联系起来,是一种广义线性回归。 比如给定身高和体重数据,通过线性回归算法训练模型后,可以得到身高体重回归方程,从而得到预测值。...现需要根据身高体重来判断胖瘦,即二分类任务,也就是要根据回归方程来转换成分类,定义激活函数,转为0~1之间值,即对数几率回归输入就是线性回归输出—— z=\bold w^T\bold x+ b 。...线性回归可参考::回归-线性回归算法(房价预测项目) 激活函数 ---- 激活函数就是将预测值 z=\bold w^T\bold x+ b 转换为0/1值。...") # 读数据 data.replace({'M': 1, 'F': 0, 'YES': 1, 'NO': 0}, inplace=True) # 数据转换 x = data.iloc[:, 0:...) 博主首页:https://wzlodq.blog.csdn.net/ 来都来了,评论两句吗 如果文章对你有帮助,记得一键三连❤

    79120

    用ChatGPT做数据分析与挖掘

    以下是通过ChatGPT给小白介绍什么是一元线性回归原理案例。...以下是ChatGPT给出答复: 好,我会尽量用简单语言来解释线性回归原理。线性回归原理:假设我们有一堆数据,比如一组关于房子大小和价格信息。...我们想知道,房子大小对价格有没有影响,而且影响程度是多少。线性回归就像是在尝试找到一条直线,通过这条直线来最好地拟合已知数据点。...简而言之,线性回归就是试图用一条直线来最好地描述已知数据,并利用这条直线来预测未知数据方法。...从ChatGPT给出答复可知,一元线性回归就是一条直线(),我们希望利用变量和已知数据,求出斜率和截距值。

    11810

    Python快速构建神经网络

    当然机器学习还有其它一些形式,我们继续讨论。 2.2、如何学习? 对于机器学习来说,如何学习是一个非常重要问题。其中已经出现了许多优秀算法,这些算法作用都是告诉机器如何学习。...比如线性回归、逻辑回归、K近邻、决策树、神经网络等。 机器学习算法可以说是机器学习灵魂。我们今天要实现神经网络也是一种机器学习算法,他是建立在逻辑回归基础之上,而逻辑回归又建立在线性回归之上。...3.1、线性回归 在前言中,我们介绍了一个简单函数: 其实它就是线性回归基础。线性回归算法就是找到一组最优w b,让我们得到最接近真实结果。...线性回归算法实现被封装在了sklearn.linear_model中LinearRegression,我们可以直接使用: import numpy as np from sklearn.linear_model...因为是一个二分类问题,所以这里输出层有两个节点。 下面输出结果: 0.9210526315789473 我们调用mlp.score评估模型好坏,92%准确率也算是一个非常优秀结果了。

    76230

    机器学习入门 9-6 在逻辑回归中使用多项式特征

    回忆一下,其实在线性回归时候做过近乎同样事情,解决非线性数据回归问题,为线性回归引入多项式项。...其中橙色点是那些y = 1样本点,蓝色点是那些y = 0样本点。 首先尝试一下,在添加多项式项情况下分类上面非线性分布样本点,得到分类结果以及决策边界是怎样?...逻辑回归算法本身就是使用一根直线来对特征平面进行划分,对于上面这样线性数据这根直线决策边界显然有非常多错误分类,所以最终模型分类准确度只有60%左右。...看看引入多项式逻辑回归算法分类准确度是多少? 分类准确度为95%,相比于只使用逻辑回归60.5%要好很多。接下来绘制对应决策边界。...通过Sklearn中对逻辑回归封装就会发现,Sklearn建议我们使用逻辑回归算法时候进行模型正则化操作。 ?

    1.5K30

    机器学习之sklearn基础教程

    (X_train) 标签编码(Label Encoding) 虽然sklearn直接提供标签编码类,但可以使用LabelEncoder对目标变量进行编码。...下面是一些常用回归算法: 线性回归(Linear Regression): 线性回归用于建立连续数值输出与一个或多个输入特征之间线性关系。...多项式回归(Polynomial Regression): 多项式回归线性回归扩展,通过引入多项式特征来处理非线性关系。 它能够拟合更复杂数据分布,特别是当数据呈现非线性趋势时。...岭回归(Ridge Regression): 岭回归是一种正则化线性回归方法,用于处理共线性问题(即特征之间高度相关)。...这些回归算法各有优势和适用场景,以下是一个使用线性回归进行预测简单例子: 线性回归预测 from sklearn.datasets import make_regression from sklearn.linear_model

    17310

    【玩转 Cloud Studio】12行代码,入门机器学习

    这并不是什么夸张,接下来,我将带你实际操作一个12行线性回归机器学习模板,在这个模板上稍作修改,你也能够有一个完全属于自己机器学习模型。...# 这个模板是线性回归from sklearn.linear_model import LinearRegression #线性回归工具包from sklearn.metrics import mean_squared_error...,mean_absolute_error,r2_score #这是用来检验线性模型工具包from sklearn.datasets import load_iris #sklearn内置一个鸢尾花数据集...3行代码,首先是选择模型,这里选择是【线性回归:LinearRegression】,然后让模型在训练集上做训练,最后再用测试集x产生模型对测试集预测结果。...一样,SPSS也能够通过超过5步点击得到一个线性回归模型(如下图所示),但是,它结果如果没有系统学习,相信没有人能够理解。

    1.4K294

    Python中线性回归完整指南

    线性回归非常适合回答以下问题: 2个变量之间是否存在关系? 关系有多强? 哪个变量贡献最大? 如何准确估计每个变量影响? 能准确预测目标吗? 这种关系是线性吗?(杜) 有互动效应吗?...那么一次对一个特征进行线性回归吗?当然不是。只需执行多元线性回归。 该方程与简单线性回归非常相似; 只需添加预测变量数量及其相应系数: ? 多元线性回归方程。...因此使用F统计量来避免将不重要预测因子视为重要预测因子。 评估模型准确性 就像简单线性回归一样,R²可以用于多元线性回归。...import LinearRegression from sklearn.metrics import r2_score import statsmodels.api as sm 阅读数据 假设下载了数据集...让看看多元线性回归是否会表现得更好。 多元线性回归 模型 就像简单线性回归一样,将定义特征和目标变量,并使用scikit-learn库来执行线性回归

    4.5K20

    机器学习入门 11-9 SVM思想解决回归问题

    比如前面介绍线性回归算法定义拟合方式就是让样本点到预测这根直线MSE值最小。...b sklearnSVC sklearn针对SVM思想解决回归问题提供了封装好SVR类(support vector regression)。...LinearSVR和前面介绍LinearSVC相对应,只不过LinearSVR是使用线性SVM思想来解决回归问题,而LinearSVC是使用线性SVM思想来处理分类问题(SVR: support...类似于SVC(LinearSVC为线性分类器,而SVC为非线性分类器),在sklearn.svm模块中还有SVR类,对于SVR类来说我们可以传入不同核函数进行计算,实例化SVR类时构造函数中参数设置和之前介绍...一定要注意我们不能仅仅看一次train_test_split得到score值,很有可能此时模型已经对样本点过拟合,得到score值并不准确,此时可以使用交叉验证方式来得到更加准确score值。

    1.1K31

    回归-线性回归算法(房价预测项目)

    文章目录 简介 损失函数 优化算法 正规方程 梯度下降 项目实战 简介 ---- 线性回归(Linear Regression)是回归任务中最常见算法,利用回归方程对自变量和因变量进行建模,且因变量和自变量之间是线性关系而得名...其中,只有一个自变量则称为一元线性回归,包含多个自变量则成为多元线性回归。...如下图,根据已知数据点(蓝色),建模得到红色回归方程,表示自变量和因变量关系,从而可以输入新自变量,得到预测值(因变量)。...sklearn库提供了两个线性模型API: LinearRegression()正规方程 fit_intercept:默认True,是否计算偏置 normalize:默认False,是否中心化 copy_X...) 博主首页:https://wzlodq.blog.csdn.net/ 来都来了,评论两句吗 如果文章对你有帮助,记得一键三连❤

    1.7K20

    【机器学习】分类与回归——掌握两大核心算法区别与应用

    示例:线性回归(Linear Regression)用于回归 import numpy as np from sklearn.datasets import load_boston from sklearn.model_selection...模型不同: 分类:常用模型如逻辑回归、KNN、支持向量机等。 回归:常用模型如线性回归、岭回归、支持向量回归等。 5. 常见分类算法 1....数据规模与维度:不同算法对数据规模和维度有不同处理效果,如 SVM 适用于高维数据,而线性回归适用于低维数据。...计算资源:一些复杂算法如支持向量机和神经网络需要大量计算资源,而简单模型如线性回归和 KNN 相对较快。 8....案例2:使用线性回归预测房价 # 加载房价数据并应用线性回归模型预测 # 类似上面展示线性回归示例 9.

    13110

    【机器学习】深入探索机器学习:线性回归算法原理与应用

    同方差性:误差项方差在所有观测值中都是相同,即误差项分布是稳定。 这些假设条件确保了线性回归模型准确性和可靠性。然而,在实际应用中,这些假设条件可能并不总是完全满足。...线性回归算法实现 介绍了这么多我们来一个简单示例代码: 线性回归算法代码示例(伪代码)(Python) # 导入必要库 from sklearn.model_selection import...残差图显示了每个数据点预测误差,有助于识别异常值或模型可能存在问题 优化线性回归模型性能几种常用方法: 特征选择与特征工程: 通过特征选择和特征工程帮助我们提高模型对新数据预测准确性 交叉验证...即使只有一个离群点,也可能对模型拟合产生较大影响,从而影响预测准确性 只能处理单个自变量: 一元线性回归模型只能处理一个自变量,无法处理多个自变量之间相互影响关系。...这在实际问题中可能会限制其应用 未来展望 非线性关系处理: 随着算法研究深入,未来线性回归算法可能会结合其他技术(如神经网络、多项式回归等)来处理非线性关系,从而提高模型适应性和预测准确性 多变量处理能力增强

    35610

    机器学习 — 多项式回归

    前言 在面对一些简单线性问题时。线性回归能够用一个直线较为精确地描述数据之间关系。但对于复杂线性数据问题时。线性回归效果就大大不如意了。...对特征数据进行多项式变化,再使用线性回归做法就能提高模型拟合效果,这种方法就是多项式回归。 上面图中可以看到线性回归不能准确描述数据关系。...在多项式中集成了一次方、二次方、三次方、四次方后使用线性回归就能完美拟合数据线性关系。...中多项式回归 (LinearRegression) 多项式回归本质上是线性回归,线性回归损失函数: l o s s = ω m i n 1 2 n s a m p l e s ∣ ∣ X ω − y...本站仅提供信息存储空间服务,拥有所有权,承担相关法律责任。如发现本站有涉嫌侵权/违法违规内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

    65820

    机器算法|线性回归、逻辑回归、随机森林等介绍、实现、实例

    1 线性回归 1.1 线性回归简介 线性回归是一种基本回归分析,用于预测一个因变量(目标变量)基于一个或多个自变量(特征)值。...) 训练数据和测试数据 创建线性回归模型对象 使用训练数据拟合模型 使用模型进行预测 输出预测结果和实际结果比较 1.3 线性回归代码示例 下面是一个简单线性回归示例 # 导入所需库...2.1 逻辑回归简介 逻辑回归是另一种从统计领域借鉴而来机器学习算法,与线性回归相同,不同线性回归是一个开放值,而逻辑回归更像是做一道是或不是的判断题,在二分问题上是首选方法。...print("预测值:", y_pred) print("实际值:", y_test) print("准确率:", accuracy_score(y_test, y_pred)) 预测结果准确度...线性回归可以通过两种方式实现: scikit-learn:如果不需要回归模型详细结果,用sklearn库是比较合适。 statsmodels:用于获取回归模型详细统计结果。

    1.1K21

    python_sklearn使用

    使用机器学习算法训练 1.监督学习 sklearn.neighbors #近邻算法 sklearn.svm #支持向量机 sklearn.kernel_ridge #核-岭回归...sklearn.discriminant_analysis #判别分析 sklearn.linear_model #广义线性模型 sklearn.ensemble #集成学习 sklearn.tree...()) #对训练集进行拟合 y_pred = logr.predict(x_test) #使用训练好逻辑回归器对测试集进行预测 计算模型评价指标 使用sklearn.metrics可以计算模型各种评价指标...,例如:准确率、召回率、精确度、F1分数、ROC曲线、AUC等指标。...本站仅提供信息存储空间服务,拥有所有权,承担相关法律责任。如发现本站有涉嫌侵权/违法违规内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

    530100

    100天搞定机器学习|Day3多元线性回归

    】2绝对残差)、多重共线性(解释变量之间由于存在精确相关关系或高度相关关系而使模型估计失真或难以估计准确)。...对R感兴趣同学可以看一下我之前分享几篇文章 R多元线性回归容易忽视几个问题(1)多重共线性 R多元线性回归容易忽视几个问题(2)多重共线性克服 R多元线性回归容易忽视几个问题(3)异方差性...R多元线性回归容易忽视几个问题(4)异方差性克服 多元线性回归中还有虚拟变量和虚拟变量陷阱概念 虚拟变量:分类数据,离散,数值有限且无序,比如性别可以分为男和女,回归模型中可以用虚拟变量表示...但是多元线性回归分析是建立在上面说四个假设前提上(①线性,自变量和因变量之间应该是线性②同方差,误差项方差恒定③残差负荷正态分布④无多重共线性),所以初步得到一个线性回归模型,并不一定可以直接拿来使用...所以明天先写day4了,狗尾续貂一下,把模型评价讲一下,敬请期待! ? 有问题,请留言! 码字不易,欢迎投食!

    62320

    机器学习-线性回归算法(房价预测项目)

    简介 线性回归(Linear Regression)是回归任务中最常见算法,利用回归方程对自变量和因变量进行建模,且因变量和自变量之间是线性关系而得名,从而可以根据已知数据预测未来数据,如房价预测、PM2.5...其中,只有一个自变量则称为一元线性回归,包含多个自变量则成为多元线性回归。...如下图,根据已知数据点(蓝色),建模得到红色回归方程,表示自变量和因变量关系,从而可以输入新自变量,得到预测值(因变量)。...) print("均方误差:", mean_squared_error(y_test, y_pre)) 使用深度学习-Pytorch库求解,可查看另一篇博客Pytorch-张量tensor详解(线性回归实战...) 原创不易,请勿转载(本不富裕访问量雪上加霜 ) 博主首页:https://wzlodq.blog.csdn.net/ 来都来了,评论两句吗 如果文章对你有帮助,记得一键三连❤

    83830

    癫痫发作分类ML算法

    这被称为准确性悖论例如,当模型准确性告诉有80%准确度时,如果类不平衡,它将只反映基础类分布。...在继续导入sklearn和构建第一个模型之前,需要扩展一些模型变量才能工作。由于将构建九种不同分类模型,因此应该使用StandardScaler 。...Logistic回归 Logistic回归是一种广义线性模型,它是常规线性模型概念和能力概括。 在逻辑回归中,模型预测某些事物是真还是假,而不是预测某些事物是连续。...这是需要缩放所有要素模型之一,并且因变量是二分。 随机梯度下降 梯度下降是一种算法,可以在许多不同模型中最小化许多损失函数,例如线性回归,逻辑回归和聚类模型。...它类似于逻辑回归,其中梯度下降用于优化线性函数。不同之处在于,随机梯度下降允许小批量学习,其中模型使用多个样本来采取单步而不是整个数据集。在数据冗余情况下尤其有用,通常通过群集看到。

    1.8K40
    领券