Spark shuffle write是指在Spark计算框架中进行数据洗牌操作时,将数据从Map阶段的输出节点传输到Reduce阶段的输入节点的过程。在这个过程中,为了保证Reduce阶段能够正确地处理数据,需要将Map阶段输出的数据按照key进行分区和排序,然后写入磁盘或内存中,以便Reduce阶段能够按照key进行合并和处理。
随机写入数据比从HDFS读取的输入数据大得多的原因如下:
综上所述,Spark shuffle write过程中的随机写入数据比从HDFS读取的输入数据大得多,是由于数据复制、数据排序和数据压缩等因素导致的。这也是为了保证Spark计算框架能够高效地进行数据洗牌和Reduce阶段的计算。
领取专属 10元无门槛券
手把手带您无忧上云