选自Medium 作者:Mike Shi 机器之心编译 参与:Pedro、刘晓坤 Tensorflow.js 是一个能在你的浏览器里运行的全新深度学习库。本文将会介绍从原生 Tiny YOLO Darknet 模型到 Keras 的转换,再到 Tensorflow.js 的转换,如何利用其作一些预测,在编写 Tensorflow.js 遇到的一些问题,以及介绍使用联网摄像头/图像轻松地进行预测检测。 项目地址:https://github.com/ModelDepot/tfjs-yolo-tiny YOL
原项目 | https://github.com/aymericdamien/TensorFlow-Examples/
在机器学习和深度学习中,我们经常会遇到各种各样的错误。其中一个常见的错误是ValueError: Error when checking : expected input_1 to have 4 dimensions, but got array with shape (50, 50, 3)。这个错误通常出现在我们使用深度学习框架如TensorFlow或Keras进行图像处理时。
张量是一个多维数组,它是标量、向量和矩阵概念的推广。在深度学习中,张量被广泛用于表示数据和模型参数。
我们需要下载 Docker 才能安装它,在本节中,您将看到我们如何在 Windows 上安装 Docker 并使用适合在 Linux 上安装的脚本。
在本文中,我们将学习如何使用keras,用手写数字图像数据集(即MNIST)进行深度学习。本文的目的是为了让大家亲身体验并熟悉培训课程中的神经网络部分。
在了解如何利用TesnsorFlow构建和训练各种模型——从基本的机器学习模型到复杂的深度学习网络后,我们就要考虑如何将训练好的模型投入于产品,以使其能够为其他应用所用,本文对此将进行详细介绍。文章节选自《面向机器智能的TensorFlow实践》第7章。 本文将创建一个简单的Web App,使用户能够上传一幅图像,并对其运行Inception模型,实现图像的自动分类。 搭建TensorFlow服务开发环境 Docker镜像 TensorFlow服务是用于构建允许用户在产品中使用我们提供的模型的服务器的工具。
如果您使用过 TensorFlow 1.x,则本部分将重点介绍迁移到 TensorFlow 2.0 所需的总体概念更改。 它还将教您使用 TensorFlow 可以进行的各种 AIY 项目。 最后,本节向您展示如何将 TensorFlow Lite 与跨多个平台的低功耗设备一起使用。
Tensorflow.js是一个基于deeplearn.js构建的库,可直接在浏览器上创建深度学习模块。使用它可以在浏览器上创建CNN(卷积神经网络)、RNN(循环神经网络)等等,且可以使用终端的GPU处理能力训练这些模型。因此,可以不需要服务器GPU来训练神经网络。本教程首先解释TensorFlow.js的基本构建块及其操作。然后,我们描述了如何创建一些复杂的模型。
沿着坐标轴给出的维数减少input_张量。除非keepdims为真,否则对于轴上的每一项,张量的秩都会减少1。如果keepdims为真,则使用长度1保留缩减后的维度。如果轴为空,则所有维数都被缩减,并返回一个只有一个元素的张量。
TensorFlow是谷歌研发的开源框架。本讲座介绍了如何使用TensorFlow创建深度学习应用程序,以及与其他Python机器学习库进行比较。 我叫Ian Lewis,我是谷歌云平台团队的开发者大
【深度学习 | 核心概念】那些深度学习路上必经的核心概念,确定不来看看? (一) 作者: 计算机魔术师 版本: 1.0 ( 2023.8.27 )
Tensorflow 是一个面向深度学习算法的科学计算库,内部数据保存在张量(Tensor)对象熵,所有的运算操作(Operation)也都是基于张量对象进行的,我们所接触到的复杂的神经网络算法本质上就是各种张量相乘,想加等一些基本运算操作的组合。
在深度学习中,我们经常需要处理各种类型的数据,并将其转换为适合机器学习算法的张量(tensor)格式。本文将介绍如何将Python中的列表(list)转换为Torch张量。
最近在使用深度学习框架进行图像处理的时候,我遇到了一个问题,错误信息显示为has invalid type '<class 'numpy.ndarray'>', must be a string or Tensor,这个问题困扰了我很长时间。经过一番研究和实践,我找到了解决方法,现在将与大家分享。
神经网络具有的推理功能,使得许许多多实时应用变为可能——比如姿态估计和背景模糊。这些应用通常拥有低延迟的特点,并且还具有隐私意识。
大数据文摘作品,转载要求见文末 编译 | 邵胖胖,江凡,笪洁琼,Aileen 也许你已经下载了TensorFlow,而且准备开始着手研究深度学习。但是你会疑惑:TensorFlow里面的Tensor,也就是“张量”,到底是个什么鬼?也许你查阅了维基百科,而且现在变得更加困惑。也许你在NASA教程中看到它,仍然不知道它在说些什么?问题在于大多数讲述张量的指南,都假设你已经掌握他们描述数学的所有术语。 别担心! 我像小孩子一样讨厌数学,所以如果我能明白,你也可以!我们只需要用简单的措辞来解释这一切。所以,张量(
高清思维导图已同步Git:https://github.com/SoWhat1412/xmindfile
NVIDIA去年发布了一个线上讲座,题目是《 AI at the Edge TensorFlow to TensorRT on Jetson 》。
选自DataCamp 作者:Karlijn Willems 机器之心编译 参与:Panda TensorFlow 已经成为了现在最流行的深度学习框架,相信很多对人工智能和深度学习有兴趣的人都跃跃欲试。对于初学者来说,TensorFlow 也是一个非常好的选择,它有非常丰富的入门学习资料和庞大的开发者社区。近日,数据科学学习平台 DataCamp 发表了一篇针对 TensorFlow 初学者的教程,从向量和张量的基本概念说起,一步步实现了一个分类交通标志图像的神经网络。机器之心对本教程进行了编译介绍。 深度学
在使用深度学习框架如PyTorch或TensorFlow进行张量操作时,你可能会遇到一个错误,该错误提示 "张量用作索引必须是长整型或字节型张量"。这个错误通常发生在你试图使用一个张量作为另一个张量的索引时,但是张量的数据类型不适合用于索引。 在本篇博客文章中,我们将探讨这个错误背后的原因,如何理解它以及如何修复它。
上一期我们发布了“一文读懂TensorFlow(附代码、学习资料)”,带领大家对TensorFlow进行了全面了解,并分享了入门所需的网站、图书、视频等资料,本期文章就来带你一步步上手TensorFlow。 1. 前言 深度学习算法的成功使人工智能的研究和应用取得了突破性进展,并极大地改变了我们的生活。越来越多的开发人员都在学习深度学习方面的开发技术。Google推出的TensorFlow是目前最为流行的开源深度学习框架,在图形分类、音频处理、推荐系统和自然语言处理等场景下都有丰富的应用。尽管功能强大,
本文长度为7196字,建议阅读10分钟 本文为你讲解如何使用Tensorflow进行机器学习和深度学习。 1. 前言 深度学习算法的成功使人工智能的研究和应用取得了突破性进展,并极大地改变了我们的生活。越来越多的开发人员都在学习深度学习方面的开发技术。Google推出的TensorFlow是目前最为流行的开源深度学习框架,在图形分类、音频处理、推荐系统和自然语言处理等场景下都有丰富的应用。尽管功能强大,该框架学习门槛并不高,只要掌握Python安装和使用,并对机器学习和神经网络方面的知识有所了解就可以上
【AI100 导读】本文是《数学不好,也可以学习人工智能》系列的第四篇文章,主要内容围绕 Tensors(张量)展开。 现在的你是否已经下载好 TensorFlow 并准备好开始深度学习了呢? 但是
TensorFlow接受了Python自己的原生数据类型,例如Python中的布尔值类型,数值数据类型(整数,浮点数)和字符串类型。单一值将转换为0维张量(标量),列表值将转换为1维张量(向量),列表套列表将被转换成2维张量(矩阵)等等,以下示例来自于TensorFlow for Machine Intelligence.
作为一个三观奇正,有志于分享的公众号,奇点在每周五都有“赠书福利”环节,把更多的好书介绍给读者。关注并转发本篇文章,然后将截图发至后台就可以参与抽奖,每周一奇点将会宣布上周幸运读者的名单,请大家持续关注哦,比心~
本文介绍了如何利用TensorFlow搭建一个简单的CNN模型来识别MNIST数据集中的手写数字。首先,介绍了CNN模型的基本原理和TensorFlow中的Keras API。然后,使用MNIST数据集训练了一个具有卷积层和全连接层的CNN模型。最后,通过在测试集上评估模型的性能,得到了97.3%的准确率。
Pytorch是一个基于Python的机器学习库。它广泛应用于计算机视觉,自然语言处理等深度学习领域。是目前和TensorFlow分庭抗礼的深度学习框架,在学术圈颇受欢迎。
在本节中,您将加深对理论的理解,并学习有关卷积神经网络在图像处理中的应用的动手技术。 您将学习关键概念,例如图像过滤,特征映射,边缘检测,卷积运算,激活函数,以及与图像分类和对象检测有关的全连接和 softmax 层的使用。 本章提供了许多使用 TensorFlow,Keras 和 OpenCV 的端到端计算机视觉管道的动手示例。 从这些章节中获得的最重要的学习是发展对不同卷积运算背后的理解和直觉-图像如何通过卷积神经网络的不同层进行转换。
上一篇我介绍了Tensorflow是符号操作运算,并结合例子来验证。这一篇我也会结合一些例子来深刻理解Tensorflow中张量的静态和动态特性。
pytorch和tensorflow的爱恨情仇之基本数据类型:https://www.cnblogs.com/xiximayou/p/13759451.html
无论你喜欢或不喜欢,深度学习就在这里等着你来学习,伴随着技术淘金热而来的过多的可选项,让新手望而生畏。
AI (Artificial Intelligence)人工智能及机器学习(Machine Learning)最近大热,Google - Deep Mind的AlphaGo踢馆人类所向披靡,最终宣布正式进入智能时代1.0。我们今天也来体验学习一下Google的人工智能项目。 1. Jeff Dean 老传统,我们先来看看这位Google TensoFlow的主要负责人,在加州山景城除了拉里佩奇Larry Page和布林Sergey Brin,Google数一数二,被用来打造下一代Google核心大脑的(Go
在TensorFlow中,最常用的可视化方法有三种途径,分别为TensorFlow与OpenCv的混合编程、利用Matpltlib进行可视化、利用TensorFlow自带的可视化工具TensorBoard进行可视化。
在深度学习中,Tensor是一种重要的数据结构,它可以用来存储和处理多维数组。在PyTorch中,Tensor是一种非常基础且常用的数据类型,它支持很多高效的操作。本篇博客将介绍如何使用torch tensor,让你快速入门。
选自machinethink.net 机器之心编译 参与:赵华龙、邵明、吴攀、李泽南 在你使用深度神经网络做预测之前,你首先要训练神经网络。现在存在许多不同的神经网络训练工具,TensorFlow 正迅速成为其中最热门的选择。近日,独立开发者 Matthijs Hollemans 在 machinethink.net 的博客上发布了一篇讲解如何在 iOS 系统上运行 TensorFlow 的深度长文教程,并开源了相关的代码。机器之心对本文进行了编译介绍。关于 TensorFlow 的更多资讯和教程,请参阅机
编辑 | 磐石 出品 | 磐创AI技术团队 【磐创AI导读】:本文接续Tensorboard详解(上篇)介绍Tensorboard和总结Tensorboard的所有功能并有代码演练。欢迎大家点击上方蓝字关注我们的公众号:磐创AI。 1. Tensorflow监控指标可视化 除了GRAPHS栏目外,tensorboard还有IMAGES、AUDIO、SCALARS、HISTOGRAMS、DISTRIBUTIONS、FROJECTOR、TEXT、PR CURVES、PROFILE九个栏目,本小节将详细介绍这些
今天,Google官方推出了使用TensorFlow.js的人体图像分割工具BodyPix 2.0,对该工具进行了一次重大升级,加入多人支持,并提高了准确率。
介绍 如果您一直在追踪数据科学/机器学习,您将不会错过深度学习和神经网络周围的动态。组织正在寻找具有深度学习技能的人,无论他们在哪里。从竞争开始到开放采购项目和大额奖金,人们正在尝试一切可能的事情来利用这个有限的人才。自主驾驶的工程师正在被汽车行业的大型枪支所猎杀,因为该行业处于近几十年来面临的最大破坏的边缘! 如果您对深度学习所提供的潜在客户感到兴奋,但还没有开始您的旅程 - 我在这里启用它。从这篇文章开始,我将撰写一系列深入学习的文章,涵盖深受欢迎的深度学习图书馆及其实践实践。 在本文中,我将向您介绍T
神经网络由具有权重和偏差的神经元组成。通过在训练过程中调整这些权重和偏差,以提出良好的学习模型。每个神经元接收一组输入,以某种方式处理它,然后输出一个值。如果构建一个具有多层的神经网络,则将其称为深度神经网络。处理这些深度神经网络的人工智能学分支被称为深度学习。
在尝试改进Guess.js的预测模型时,我开始研究深度学习。我主要关注RNN,特别是LSTM,因为它们在Guess.js领域具有不合理的有效性(unreasonable effectiveness)。并且,我开始使用CNN,虽然传统上不那么常用,但也可用于时间序列。CNN通常用于图像分类,识别和检测。
随着 2012 年深度神经网络在 ImageNetchallenge 比赛上以 AlexNet 模型获胜,深度神经网络开创了空前的高潮。AI 工程师已经将深度学习技术应用到越来越多的问题域,包括预训练的深度美国有线电视新闻网模型。还有什么比创造艺术更富有创造力呢?
在本部分中,我们将介绍 TensorFlow 2.00 alpha。 我们将首先概述该机器学习生态系统的主要功能,并查看其使用示例。 然后我们将介绍 TensorFlow 的高级 Keras API。 我们将在本节结尾处研究人工神经网络技术。
欢迎来到本书的第一部分。在这里,我们将与 PyTorch 迈出第一步,获得理解其结构和解决 PyTorch 项目机制所需的基本技能。
TensorFlow服务,托管模型并提供远程访问。TensorFlow服务有一个很好的文档的架构和有用的教程。不幸的是,这个有点难用,你需要做较大改动来为自己的模型提供服务。
它允许您使用一组TensorFlow操作并注释构造,以便toco知道如何将其转换为tflite。这在张量流图中嵌入了一个伪函数。这允许在较低级别的TensorFlow实现中嵌入高级API使用信息,以便以后可以替换其他实现。本质上,这个伪op中的任何“输入”都被输入到一个标识中,并且属性被添加到该输入中,然后由构成伪op的组成ops使用。
协议:CC BY-NC-SA 4.0 自豪地采用谷歌翻译 不要担心自己的形象,只关心如何实现目标。——《原则》,生活原则 2.3.c 在线阅读 ApacheCN 面试求职交流群 724187166 ApacheCN 学习资源 目录 TensorFlow 1.x 深度学习秘籍 零、前言 一、TensorFlow 简介 二、回归 三、神经网络:感知器 四、卷积神经网络 五、高级卷积神经网络 六、循环神经网络 七、无监督学习 八、自编码器 九、强化学习 十、移动计算 十一、生成模型和 CapsNet
领取专属 10元无门槛券
手把手带您无忧上云