我遵循本教程()从自定义数据集生成词汇表。在本教程中,该代码大约需要2分钟才能完成:
bert_vocab_args = dict(
# The target vocabulary size
vocab_size = 8000,
# Reserved tokens that must be included in the vocabulary
reserved_tokens=reserved_tokens,
# Arguments for `text.BertTokenizer`
bert_tokenizer_params=bert_tokeni
我一直在关注tensorflow教程https://www.tensorflow.org/official_models/fine_tuning_bert 在第一个代码片段中,我看到了很多来自官方模块的导入 import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
import tensorflow_hub as hub
import tensorflow_datasets as tfds
tfds.disable_progress_bar()
from official.modeling im
来自Knockout教程:
为什么要这么做?
<p>First name: <input data-bind="value: firstName" /></p>
而这不是?
<p>First name: <input data-bind="text: firstName" /></p>
ViewModel
// This is a simple *viewmodel* - JavaScript that defines the data and behavior of your UI
错误消息如下
Traceback (most recent call last):
File "./run_classifier.py", line 914, in <module>
tf.app.run()
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/platform/app.py", line 40, in run
_run(main=main, argv=argv, flags_parser=_parse_flags_tolerate_un
我试图在XLNet中做这样的事情,但是我在文档中找不到这个部分,任何帮助都是有价值的,谢谢!
# we access the transformer model within our bert object using the bert attribute
# (eg bert.bert instead of bert)
embeddings = bert.bert(input_ids, attention_mask=mask)[1] # access pooled activations with [1]
(而不是bert.bert,我试图用xlnet来实现它)
class BertClassifier(nn.Module):
#Bert Model for Classification Tasks.
def __init__(self, freeze_bert=False):
"""
@param bert: a BertModel object
@param classifier: a torch.nn.Module classifier
@param freeze_bert (bool): Set `Fals
我是这个领域的初学者,我被困住了。我遵循本教程()构建一个多标签分类使用拥抱脸转换器。
下面是我用来训练我的模型的代码。
# Name of the BERT model to use
model_name = 'bert-base-uncased'
# Max length of tokens
max_length = 100
PATH = 'uncased_L-12_H-768_A-12/'
# Load transformers config and set output_hidden_states to False
config = BertConf
如何两次独立地将输入句子传递到bert中? 这是我到目前为止所尝试的,输出是相同的。 bert = AutoModel.from_pretrained('bert-base-cased')
tokenizer = AutoTokenizer.from_pretrained('bert-base-cased')
sent_dict = tokenizer('Some weights of the model checkpoint at bert-base-cased were not used when initializing BertModel