首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    学习July博文总结——支持向量机(SVM)的深入理解(下)

    接上篇博文《学习July博文总结——支持向量机(SVM)的深入理解(上) 》; 三、证明SVM 凡是涉及到要证明的内容和理论,一般都不是怎么好惹的东西。绝大部分时候,看懂一个东西不难,但证明一个东西则需要点数学功底;进一步,证明一个东西也不是特别难,难的是从零开始发明创造这个东西的时候,则显艰难。因为任何时代,大部分人的研究所得都不过是基于前人的研究成果,前人所做的是开创性工作,而这往往是最艰难最有价值的,他们被称为真正的先驱。牛顿也曾说过,他不过是站在巨人的肩上。你,我则更是如此。正如陈希孺院士在他的著作

    09

    十张图解释机器学习

    3.奥卡姆剃刀:贝叶斯推理表现出奥卡姆剃刀原理了。 这个图给出了为什么复杂的模型会变得不那么可能了。 水平轴表示可能的数据集D的空间。贝叶斯定理奖励模型的比例与他们预测发生的数据有多少有关系。 这些预测通过D上的归一化概率分布来量化。给出模型H i,P(D | H i)的数据的概率被称为H i的证据。 简单模型H1仅仅会产生有限范围的预测,如P(D | H1)所示; 具有例如比H1更多的自由参数的更强大的模型H2能够预测更多种类的数据集。 然而,这意味着H2不像H1那样强烈地预测区域C1中的数据集。假设已将相等的先验概率分配给两个模型。 然后,如果数据集落在区域C1中,则较不强大的模型H1将是更有可能的模型。

    01
    领券