首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

小波去噪程序c语言,小波去噪c语言程序

1、小波阈值去噪理论小波阈值去噪就是对信号进行分解,然后对分解后的系数进行阈值处理,最后重构得到去噪信号。该算法其主要理论依据是:小波变换具有很强的去数据相关性,它能够使信号的能量在小波域集中在一些大的小波系数中;而噪声的能量却分布于整个小波域内。因此,经小波分解后,信号的小波系数幅值要大于噪声的系数幅值。可以认为,幅值比较大的小波系数一般以信号为主,而幅值比较小的系数在很大程度上是噪声。于是,采用阈值的办法可以把信号系数保留,而使大部分噪声系数减小至零。小波阈值收缩法去噪的具体处理过程为:将含噪信号在各尺度上进行小波分解,设定一个阈值,幅值低于该阈值的小波系数置为0,高于该阈值的小波系数或者完全保留,或者做相应的收缩(shrinkage)处理。最后将处理后获得的小波系数用逆小波变换进行重构,得到去噪后的信号.

01
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    用c语言手搓一个600行的类c语言解释器: 给编程初学者的解释器教程(1)- 目标和前言

    用c语言手搓一个600行的类c语言解释器: 给编程初学者的解释器教程(1)- 目标和前言 用c语言手搓一个600行的类c语言解释器: 给编程初学者的解释器教程(2)- 简介和设计 用c语言手搓一个600行的类c语言解释器: 给编程初学者的解释器教程(3)- 词法分析 用c语言手搓一个600行的类c语言解释器: 给编程初学者的解释器教程(4)- 语法分析1:EBNF和递归下降文法 用c语言手搓一个600行的类c语言解释器: 给编程初学者的解释器教程(5)- 语法分析2: tryC的语法分析实现 用c语言手搓一个600行的类c语言解释器: 给编程初学者的解释器教程(6)- 语义分析:符号表和变量、函数

    02

    浅析傅里叶分析

    傅里叶是一位法国数学家和物理学家,他在1807年在法国科学学会上发表了一篇论文,论文里描述运用正弦曲线来描述温度分布,论文里有个在当时具有争议性的决断:任何连续周期信号都可以由一组适当的正弦曲线组合而成。当时审查这个论文拉格朗日坚决反对此论文的发表,而后在近50年的时间里,拉格朗日坚持认为傅立叶的方法无法表示带有棱角的信号,如在方波中出现非连续变化斜率。直到拉格朗日死后15年这个论文才被发表出来。 那到底谁才是正确的呢?拉格朗日的观点是:正弦曲线无法组成一个带有棱角的信号。这是对的,但是,我们却可以用正弦信号来非常逼近地表示它,逼近到两种方法不存在能量差异,这样来理解的话,那傅里叶是正确的。

    01

    第十四届蓝桥杯集训——练习解题阶段(无序阶段)-ALGO-1004 无聊的逗

    这段时间我会把蓝桥杯官网上的所有非VIP题目都发布一遍,让大家方便去搜索,所有题目都会有几种语言的写法,帮助大家提供一个思路,当然,思路只是思路,千万别只看着答案就认为会了啊,这个方法基本上很难让你成长,成长是在思考的过程中找寻到自己的那个解题思路,并且首先肯定要依靠于题海战术来让自己的解题思维进行一定量的训练,如果没有这个量变到质变的过程你会发现对于相对需要思考的题目你解决的速度就会非常慢,这个思维过程甚至没有纸笔的绘制你根本无法在大脑中勾勒出来,所以我们前期学习的时候是学习别人的思路通过自己的方式转换思维变成自己的模式,说着听绕口,但是就是靠量来堆叠思维方式,刷题方案自主定义的话肯定就是从非常简单的开始,稍微对数据结构有一定的理解,暴力、二分法等等,一步步的成长,数据结构很多,一般也就几种啊,线性表、树、图、再就是其它了。顺序表与链表也就是线性表,当然栈,队列还有串都是属于线性表的,这个我就不在这里一一细分了,相对来说都要慢慢来一个个搞定的。蓝桥杯中对于大专来说相对是比较友好的,例如三分枚举、离散化,图,复杂数据结构还有统计都是不考的,我们找简单题刷个一两百,然后再进行中等题目的训练,当我们掌握深度搜索与广度搜索后再往动态规划上靠一靠,慢慢的就会掌握各种规律,有了规律就能大胆的长一些难度比较高的题目了,再次说明,刷题一定要循序渐进,千万别想着直接就能解决难题,那只是对自己进行劝退处理。加油,平常心,一步步前进。

    03

    如果看了这篇文章你还不懂傅里叶变换,那就过来掐死我吧

    傅里叶分析不仅仅是一个数学工具,更是一种可以彻底颠覆一个人以前世界观的思维模式。但不幸的是,傅里叶分析的公式看起来太复杂了,所以很多大一新生上来就懵圈并从此对它深恶痛绝。老实说,这么有意思的东西居然成了大学里的杀手课程,不得不归咎于编教材的人实在是太严肃了。(您把教材写得好玩一点会死吗?会死吗?)所以我一直想写一个有意思的文章来解释傅里叶分析,有可能的话高中生都能看懂的那种。所以,不管读到这里的您从事何种工作,我保证您都能看懂,并且一定将体会到通过傅里叶分析看到世界另一个样子时的快感。至于对于已经有一定基础的朋友,也希望不要看到会的地方就急忙往后翻,仔细读一定会有新的发现。

    03

    科学瞎想系列之一一一 NVH那些事(14)

    如前所述,NVH代表三个方面,即:噪声(Noise)、振动(Vibration)、舒适性或平顺性(Harshness)。振动是NVH的基础和核心,振动产生噪声,而舒适性是振动噪声综合作用的结果,从这个意义上讲,V是N、H之母,其实NVH主要就是说振动和噪声这两件事,这两件事解决了,舒适性(H)自然就解决了。前面讲的重点都是振动(V),说完振动接下来就说说噪声(N)。 说到噪声前面曾有一期瞎想之六十一《说说噪声》,其中对有关噪声的基本概念做了简要介绍,可惜当时还没有写这个NVH系列文章的计划,没有归入这个系列,大家不妨先看看那篇文章里的基础知识,把那篇文章作为NVH噪声部分的一篇吧,如果以后有机会重新编辑出版这些文章,我会把它重新编辑归类。本期我们就接着前面那篇文章往下讲,说说声波及其传播的特点。 1 声波 物体振动会引起其周围介质的振动,因此会将这种振动以波的形式传播到远方,我们称这种波为声波,最原始的那个振动物体称为声源或振动源。声波是一种纵波,也叫疏密波。声波通过空气传播到宝宝们的耳朵里,引起耳膜的振动,宝宝们就会感觉到声音,但并不是所有引起耳膜的振动宝宝们都能感觉到,只有那些频率在20~20000Hz的振动宝宝们能听到,低于这个频段的振动宝宝们是听不到的,我们叫它次声波;高于这个频段的振动宝宝们同样听不到,我们叫它超声波。 2 描述声波的物理量 声波可以用三个物理量来描述,即:声速C、波长λ和频率f。声速表示声波在介质中的传播速度,即单位时间里传播的距离m/s;波长表示一个疏密周期的间距,也就是振动一次的时间周期内传播的距离;频率表示振动的快慢,即每秒钟的振动次数。三者之间的关系是: C=λ•f ⑴ 这里要特别强调一下:声速和质点的振动速度可是两码事,千万不要混淆!声波在介质中的传播速度(声速)C是介质的固有参数,取决于介质的密度ρ和弹性模量E(应力与应变之比),与振动源无关。声速: C=(E/ρ)^½ ⑵ 由⑵式可见,介质的密度越大,声速越慢;介质的弹性模量越大,声速越快。通常由于固体的弹性模量高于液体且远高于气体,因此通常固体中的声速高于液体中的声速,液体中的声速高于气体中的声速。在20℃及标准大气压下,空气中的声速为344 m/s。水中的声速约为1450m/s,钢铁中的声速约为5000m/s。由于声音在钢铁中的传播速度远高于空气,所以宝宝们把耳朵贴在铁轨上听火车的声音往往要比在空气中听要先知道火车的远近。古代作战时也经常采用人耳贴在地上听敌军的马蹄声来预警。 声速是介质的固有特性,介质一定时,声速就是一个常数,由⑴式可知,声速一定时,频率越高,波长就越短,1000Hz的声波在空气中的波长约为344毫米,人类能听到的声波波长范围大概在17mm~17m之间。这一点希望宝宝们能记住,因为后面会讲到,声音的辐射、传播等特性都与波长(或频率)有着密切的关系。 3 声波在传播过程中的衰减 声波在一个均匀介质传播过程中是会衰减的,距离声源越远,声强越小。当声源尺寸远小于波长时,可以把声源看作点声源,此时声波在广阔的空气中以球面传播,声压会随着距声源距离的增大而成反比地减小,声强与距离平方成反比地减小。即:p∝1/r,I∝1/r²(r为观察点到声源的距离;p为声压;I为声强)。这种规律称为反平方衰减律。若已知距离声源1米处的声强级,则该声强级减去10lg(1/r²)或减去20lg(1/r)之后即可求出距离声源r处的声强级,当距离加倍时,声强级减小6dB。这个关系式并没有考虑传播过程中空气对声波的吸收,试验表明,在传播过程中,空气会对声波有吸收,而且对高频的吸收比低频大,因此,高频声波的衰减会比低频声波衰减的快,通常对于1000Hz以下的声波,用这个公式计算还是比较准确的,超过1000Hz就不准确了。在电机噪声测试时,一般取测量点距离电机1米(微电机取0.4米)处测量,这时衰减极微,可以略去。 4 声波的绕射 声波在传播时如果遇到障碍物,是可以绕过障碍物的,这种现象称为绕射。所谓“隔墙有耳”,主要就是因为绕射现象,使得虽然隔着一堵墙,但仍能听到隔壁人的说话。声波绕射有个特点,低频声波波长较长,容易绕射,频率越高波长越短的声波越不容易绕射。因此隔墙偷听男人的声音要比女人的声音可能会更容易些。工作场所经常会用隔板来隔音,由于波长越长的声波越容易绕射,因此要想起到良好的隔音效果,隔板的尺寸应该足够大,一般隔板的尺寸至少要大于波长的2倍才能起到良好的隔音效果,此外还应注意隔板距离噪声源以及听众距离隔板的距离都应不大于一倍的波长,这样才能起到良好的隔音效果。 5 声波的叠加 当两个同频率不同地点的声源发出的声波传播到某点时,如果在该点的两列声波振幅相等、相位相反,那么这两个声波在该点叠加合成的声波振幅为0,当然也就听

    02

    【终极完整版】不懂数学也能明白傅里叶分析和感受数学之美

    这篇文章的核心思想就是:   要让读者在不看任何数学公式的情况下理解傅里叶分析。   傅里叶分析不仅仅是一个数学工具,更是一种可以彻底颠覆一个人以前世界观的思维模式。但不幸的是,傅里叶分析的公式看起来太复杂了,所以很多大一新生上来就懵圈并从此对它深恶痛绝。老实说,这么有意思的东西居然成了大学里的杀手课程,不得不归咎于编教材的人实在是太严肃了。(您把教材写得好玩一点会死吗?会死吗?)所以我一直想写一个有意思的文章来解释傅里叶分析,有可能的话高中生都能看懂的那种。所以,不管读到这里的您从事何种工作,我保证您都能

    04
    领券