首先看两个个结论:
结论一:方程组Ax=b的最小二乘解的通式为x=Gb+(I-GA)y, 其中G\in A\{1, 3\}, y是\mathbb C^n中的任意向量....结论二:只有A是满秩时, 矛盾方程组Ax=b 的最小二乘解才是唯一的, 且为x_0=(A^HA)^{-1}A^Hb. 否则, 便有无穷多个最小二乘解....下面看一个实例:
求矛盾方程组
\begin{cases}x_1+2x_2=1, \\2x_1+x_2=0, \\x_1+x_2=0\end{cases}的最小二乘解。...解:
系数矩阵A=\left[\begin{matrix}1&2\\2&1\\1&1\end{matrix}\right] 为列满秩矩阵,故矛盾方程有唯一最小二乘解:
A^{(1, 3)}=(A^HA)...则我们将(x_i, y_i)的值带入线性方程y_i=kx_i+b得到方程组\begin{cases}kx_0+b=y_0 \\ kx_1+b=y_1 \\ ...