在C语言中,可以使用算法来计算欧拉函数(Euler's Totient Function)。欧拉函数,也被称为φ函数,用于计算小于或等于给定数字n的正整数中与n互质的数的个数。
高斯消元(Gaussian Elimination)是一种用于解线性方程组的算法,通过逐步的行变换来将方程组转化为简化的行阶梯形式,从而求解方程组的解。
迭代法也称辗转法,是一种逐次逼近方法,在使用迭代法解方程组时,其系数矩阵在计算过程中始终不变。它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或步骤)时,都从变量的原值推出它的一个新值。
最小二乘法是用来做函数拟合或者求函数极值的方法。在机器学习,尤其是回归模型中,经常可以看到最小二乘法的身影,这里就对我对最小二乘法的认知做一个小结。
有一说一,矩阵的数值算法不是那么简单的写,我这里会推荐一些学习的资源假如你愿意学的话。
前段时间过冷水在学习中遇到了一个解非线性方程组的问题,遇到非线性方程组的的问题过冷水果断一如既往、毫不犹豫的 fsolve()、feval()函数走起,直到有人问我溯本求源的问题——非线性方程组求解算法。
上篇博客 【运筹学】线性规划数学模型 ( 单纯形法 | 迭代原则 | 入基 | 出基 | 线性规划求解示例 ) 讲解了单纯形法中选择了入基变量 , 与出基变量 , 找到了下一组迭代的可行基 , 下面开始继续进行后续操作 ;
记得大学开始学计算机编程的的第一个语言就是C语言,C语言是一门通用计算机编程语言。以前使用的WinTc编译工具,如今我们的系统都是64位,WinTc已经被淘汰了今天我就用VC 6.0开始学习。如果你没有安装可以下载安装一下。也可以用visual studio 。未本文多以实例 大家讲解。
在matlab中符号变量间也可进行算术运算,常用算术符号:+、-、*、.*、\、.\、/、./、^、.^、 '、 .',假设用符号变量A和B,其中A,B可以是单个符号变量也可以是有符号变量组成的符号矩阵。当A,B是矩阵时,运算规则按矩阵运算规则进行。
本书编写了300多个实用而有效的数值算法C语言程序。其内容包括:线性方程组的求解,逆矩阵和行列式计算,多项式和有理函数的内插与外推,函数的积分和估值,特殊函数的数值计算,随机数的产生,非线性方程求解,傅里叶变换和FFT,谱分析和小波变换,统计描述和数据建模,常微分方程和偏微分方程求解,线性预测和线性预测编码,数字滤波,格雷码和算术码等。全书内容丰富,层次分明,是一本不可多得的有关数值计算的C语言程序大全。本书每章中都论述了有关专题的数学分析、算法的讨论与比较,以及算法实施的技巧,并给出了标准C语言实用程序。这些程序可在不同计算机的C语言编程环境下运行。
,则迭代路径为一条水平直线,即为著名的牛顿-拉夫逊方法。对于图2所示的求解问题,牛顿-拉夫逊方法不能跨过极值点得到完整的荷载-位移曲线。因此,弧长法最重要的就是求荷载增量。
这一节我们开始介绍二次规划的相关内容。二次规划也是一类具体的非线性规划的问题,也有对应的方法。
递推方程求解完整过程 : 求解上述汉诺塔 常系数线性齐次递推方程 部分的通解 ,
BP算法是一种有监督式的学习算法,其主要思想是:输入学习样本,使用反向传播算法对网络的权值和偏差进行反复的调整训练,使输出的向量与期望向量尽可能地接近,当网络输出层的误差平方和小于指定的误差时训练完成,保存网络的权值和偏差。具体步骤如下: (1)初始化,随机给定各连接权[w],[v]及阀值θi,rt。 (2)由给定的输入输出模式对计算隐层、输出层各单元输出 bj=f(■wijai-θj) ct=f(■vjtbj-rt) 式中:bj为隐层第j个神经元实际输出;ct为输出层第t个神经元的实际输出;wij为输入层
BP算法是一种有监督式的学习算法,其主要思想是:输入学习样本,使用反向传播算法对网络的权值和偏差进行反复的调整训练,使输出的向量与期望向量尽可能地接近,当网络输出层的误差平方和小于指定的误差时训练完成,保存网络的权值和偏差。具体步骤如下:
有些 递推方程 的 特征方程 的 特征根 有 重根 的情况 , 特征方程解出来的 特征根有一部分是相等的 , 这样就使得 通解中的常数无法获取唯一的值 ;
如下所示为一方阵 在 matlab 输入矩阵: A = [1 2 4; 407 9 1 3]; 2. 2 查阅 matlab help 可以知道,利用 eig 函数可以快速求解矩阵的特征值与特 征……
这一节我们会接着上一节,介绍完近端牛顿方法(Proximal Newton Method),剩下的时间会拿来介绍一些基本的矩阵论和数值计算的知识,用于对之后介绍高阶方法的铺垫~
当 a\times d-b\times c=0 时 A 没有定义,A^{-1}不存在,则 A 是奇异矩阵。
参考 【运筹学】线性规划数学模型标准形式 ( 标准形式 | 目标函数转化 | 决策变量转化 | 约束方程转化 | 固定转化顺序 | 标准形式转化实例 ) 线性规划 普通形式 -> 标准形式 转化顺序说明 博客 , 先处理变量约束 , 再将不等式转为等式 , 最后更新目标函数 ;
摘录的一篇有关求解非线性最小二乘问题的算法–LM算法的文章,当中也加入了一些我个人在求解高精度最小二乘问题时候的一些感触:
BBsolve()@BB:使用Barzilai-Borwein步长求解非线性方程组
mod 1234 (3)计算 gcd(57,93),并找出整数s和t,使得57s+93t=gcd(57,93) (4)求解下列同余方程组
说起数学计算器,我们常见的是加减乘除四则运算,有了它,我们就可以摆脱笔算和心算的痛苦。四位数以上的加减乘除在数学的原理上其实并不难,但是如果不借助于计算器,光依赖我们的运算能力(笔算和心算),不仅运算的准确度大打折扣,而且还会让我们对数学的运用停留在一个非常浅的层次。
线性回归 首先展示了一段视频,介绍了Dean Pomerleau利用监督学习让一辆汽车可以自动行驶。 使用的符号 符号 代表的含义 m 训练样本的数目 X 输入变量,通常也可以称为特征 y 输出变量,有时也称为目标变量 (X, y) 表示一个样本 (\(X^{(i)}\), \(y^{(i)}\)) 表示第i个样本 h 假设(hypothesis)函数 n 特征的个数 推导过程 首先是单个特征的线性假设函数 image.png 多个特征的线性假设函数 image.png 为了便利,定义 image.png
本人介绍:双非一本大三混子,有点后悔自己没有在大学一开始就选定自己的方向。侥幸在大学时期获得过校级数模三等奖,校级ACM二等奖,市场调查分析大赛省级二等奖。综合测评班级第一,获得过国家励志奖学金,校级一等奖学金;大一两个学期无脑通关英语四六级,计算机二级。
其中 m 1 , m 2 , m 3 . . . m k m_1,m_2,m_3...m_k m1,m2,m3...mk为两两互质的整数 求x的最小非负整数解
( 1 ) 递推方程标准形式 : 写出递推方程 标准形式 , 所有项都在等号左边 , 右边是
在确定了可优化二次型的类型后,本文讨论二次型的优化方法。 当前问题 解方程\bf{Ax}=\bf{b} 其中\bf{A}为半正定矩阵 \bf{A}的秩与其增广矩阵\bf{Ab}的秩相等 优化方法 代数法 高斯消元法 数学上,高斯消元法(或译:高斯消去法),是线性代数规划中的一个算法,可用来为线性方程组求解。但其算法十分复杂,不常用于加减消元法,求出矩阵的秩,以及求出可逆方阵的逆矩阵。 在\bf{A}的行列式不为0时,可以逐项消除半边系数,得到三角阵,计算得到x_n再逐步带入计算出其他
牛顿法是数值优化算法中的大家族,她和她的改进型在很多实际问题中得到了应用。在机器学习中,牛顿法是和梯度下降法地位相当的的主要优化算法。在本文中,SIGAI将为大家深入浅出的系统讲述牛顿法的原理与应用。
已知现在有M个广告主和N个广告词,其中每个单位流量的(广告主,广告词)收益固定,且每个广告主/广告词均有流量分配限制,问如何给(广告主,广告词)分配流量,使得收益达到最大。
上一篇主要对符号对象进行了一些生成和使用的基本操作,然后本篇将介绍符号矩阵、微积分、积分变换以及符号方程的求解,具体内容就往下慢慢看了。
将线性规划转化为标准形式 , 就可以使用求解方程组的方法 , 求解线性规划的可行解 ;
就可以求出唯一解:X= -984.7667 Y= -61.2 Z= 327.5667 看起来确实有点难度哦!
文章目录 一、斐波那契数列求解 二、无重根下递推方程求解完整过程 一、斐波那契数列求解 ---- 1 . 斐波那契数列示例 : ( 1 ) 斐波那契数列 : 1 , 1 , 2 , 3 , 5 , 8 , 13 , \cdots ( 2 ) 递推方程 : F(n) = F(n-1) + F(n-2) 描述 : 第 n 项等于第 n-1 项 和 第 n-2 项之和 ; 如 : 第 4 项的值 F(4) = 5 , 就等于 第 4-1=3 项的值 F(4-1)=F(3) = 3 加
$$ \begin{cases} a_{11}x_1&+&a_{12}x_2&+&\cdots&+a_{1n}x_n&=&b_1\\ &&&&\vdots\\ a_{n1}x_1&+&a_{n2}x_2&+&\cdots&+a_{nn}x_n&=&b_n& \end{cases} $$
根据 对偶理论中的 强对偶性 , 如果 原问题 与 对偶问题 都有可行解 , 只要有一个问题有最优解 , 则 两个问题都有最优解 , 二者的最优解的目标函数值相等 ;
大家好!最近有很多朋友询问我关于 Matlab 的使用,于是我决定写一篇博客来分享一下我的经验。对于数学和编程爱好者来说,Matlab 是一个非常有用的工具。我自己在数学实验和数学建模竞赛中也经常使用它。那么,为什么 Matlab 这么受欢迎呢?
高对差分格式的认识和离散化分析问题的技巧,加深对理论课程的学习和理解,为数学专业和信息与计算科学专业其他后继课程的学习打好基础。
大家好,之前在论坛里问了不少有关线性代数计算库的问题,现在姑且来交个作业,顺便给出一些用Rust做科学计算的个人经验。结论我就直接放在开头了。
共轭梯度法是方程组求解的一种迭代方法。这种方法特别适合有限元求解,因为该方法要求系数矩阵为对称正定矩阵,而有限元平衡方程的系数矩阵正好是对称正定矩阵(考虑边界条件)。同时,共轭梯度法也适合并行计算。
当线性方程组的规模比较大时,采用高斯消元法需要太多时间。这时就要采用迭代法求解方程组了。高斯消元法是一个O(n^3)的浮点运算的有限序列,在经过有限步计算之后理论上得到的是精确解(无舍入误差时)。而迭代法在经过有限步迭代之后一般不产生精确解,迭代法在计算过程中逐渐减小误差,当误差小于容许值时停止迭代计算。方程组的系数矩阵是严格对角占优矩阵时,迭代总是收敛的。
是否同号, 然后即可知根落在左侧还是右侧, 用这个中点来代替掉原来的端点, 然后得到一个新的区间, 如此反复迭代下去之后, 我们会发现区间收敛到接近一个数
解一元二次方程是高中数学中的重要内容,也是数学中的基础知识之一。在Python语言中,我们可以使用数学库中的函数来解一元二次方程。一元二次方程的一般形式为:ax²+bx+c=0,其中a、b、c为已知数,x为未知数。解一元二次方程的方法有多种,其中最常用的方法是求根公式。求根公式为:x=(-b±√(b²-4ac))/2a 在Python语言中,我们可以使用math库中的sqrt函数来求平方根,使用pow函数来求幂次方。下面是一个解一元二次方程的Python程序:
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/sinat_35512245/article/details/53232808
这个问题很好解释,矩阵使得公式表达更加的方便。就这一便利性而言就值得引入矩阵这一概念,譬如:
R是作为统计语言,生来就对数学有良好的支持,一个函数就能实现一种数学计算,所以用R语言做数学计算题特别方便。如果计算器中能嵌入R的计算函数,那么绝对是一种高科技产品。
领取专属 10元无门槛券
手把手带您无忧上云