1、用两个数组分别存储数据元素(顶点)的信息和数据元素之间的关系(边或弧)的信息。
A graph which is connected and acyclic can be considered a tree. The height of the tree depends on the selected root. Now you are supposed to find the root that results in a highest tree. Such a root is called the deepest root.
树(Tree)是一种非线性的数据结构,由若干个节点(Node)组成。树的定义包括以下几个术语:
最近想回过头来看看以前写的一些代码,可叹为何刚进大学的时候不知道要养成写博客的好习惯。现在好多东西都没有做记录,后面也没再遇到相同的问题,忘的都差不多了。只能勉强整理了下面写的一些代码,这些代码有的有参考别人的代码,但都是自己曾经一点点敲的,挂出来,虽然很基础,但希望能对别人有帮助。
前面几篇已经介绍了线性表和树两类数据结构,线性表中的元素是“一对一”的关系,树中的元素是“一对多”的关系,本章所述的图结构中的元素则是“多对多”的关系。图(Graph)是一种复杂的非线性结构,在图结构中,每个元素都可以有零个或多个前驱,也可以有零个或多个后继,也就是说,元素之间的关系是任意的。现实生活中的很多事物都可以抽象为图,例如世界各地接入Internet的计算机通过网线连接在一起,各个城市和城市之间的铁轨等等。
拓扑排序在工程管理领域中的应用广泛,可用于判断工程能否顺利开展,即判断有向图中是否存在回路。对于一个有向图,先由键盘输入其顶点和弧的信息,采用恰当存储结构保存该有向图后,依据拓扑排序算法思想输出其相应的顶点拓扑有序序列,并提示用户是否存在回路。
含有n个顶点的无向完全图有多少条边? n×(n-1)/2条边 含有n个顶点的有向完全图有多少条弧? n×(n-1)条边
无论是有向图还是无向图,主要的存储方式都有两种:邻接矩阵和邻接表。前者图的数据顺序存储结构,后者属于图的链接存储结构。
大家好,我是架构君,一个会写代码吟诗的架构师。今天说一说【C#数据结构系列】图[通俗易懂],希望能够帮助大家进步!!!
这两种方法在形式上相像,其区别在于:pa是指针变量,a是数组名。值得注意的是:pa是一个可以变化的指针变量,而a是一个常数。因为数组一经被说明,数组的地址也就是固定的,因此a是不能变化的,不允许使用a++、++a或语句a+=10,而pa++、++pa、pa+=10则是正确的。
数据结构想必大家都不会陌生,对于一个成熟的程序员而言,熟悉和掌握数据结构和算法也是基本功之一。数据结构本身其实不过是数据按照特点关系进行存储或者组织的集合,特殊的结构在不同的应用场景中往往会带来不一样的处理效率。
图是一种非线性数据结构,它由节点(也称为顶点)和连接这些节点的边组成。图可以用来表示各种关系和连接,比如网络拓扑、社交网络、地图等等。图的节点可以包含任意类型的数据,而边则表示节点之间的关系。图有两种常见的表示方法:邻接矩阵和邻接表。
搜索一个图是有序地沿着图的边訪问全部定点, 图的搜索算法能够使我们发现非常多图的结构信息, 图的搜索技术是图算法邻域的核心。
举个栗子,大家一定都用过微信,假设你的微信朋友圈中有若干好友:张三、李四、王五、赵六、七大姑、八大姨。
PHP数据结构(九)——图的定义、存储与两种方式遍历 (原创内容,转载请注明来源,谢谢) 一、定义和术语 1、不同于线性结构和树,图是任意两个元素之间都可以有关联的数据结构。 2、顶点:数据元素;弧:顶点A至顶点B的连线,弧是单向的,出发的点称为弧尾,抵达的点称为弧头;边:顶点A和B之间的连线,没有方向性。 3、有向图:由顶点和弧组成的图;无向图:由顶点和边组成的图。 4、完全有向图:n个顶点有n(n-1)个弧;完全无向图:n个顶点有n
PS:邻接表,存储方法跟树的孩子链表示法相类似,是一种顺序分配和链式分配相结合的存储结构。如这个表头结点所对应的顶点存在相邻顶点,则把相邻顶点依次存放于表头结点所指向的单向链表中。图的邻接表储存方式相对于邻接矩阵比较节约空间,对于邻接矩阵需要分别把顶点和边(顶点之间的关系)用一维数组和二维数组储存起来。而邻接表则是把顶点按照顺序储存到一维数组中,然后再通过链式方式,把有关系的顶点下标链接到后方,咱们先不考虑权重问题,结构体定义简单一点,当然加上权值也不难。下方看图解释。 邻接表 有向图 无向图 逆邻接表 有
图是非线性数据结构,是一种较线性结构和树结构更为复杂的数据结构,在图结构中数据元素之间的关系可以是任意的,图中任意两个数据元素之间都可能相关。
连通图:在无向图G中,若对任何两个顶点 v、u 都存在从v 到 u 的路径,则称G是连通图。
在我们生活中,每天使用的微信等社交软件,我们的好友关系网也能被形象成一种图结构,如图,图能表示各种丰富的关系结构
景禹: 图的遍历方法包括 深度优先遍历(搜索) 和 广度优先遍历(搜索) 两种方式。小禹禹能给我说一下树的四种遍历方式吗?
邻接矩阵优点是简单,对于小图,很容易看到哪些节点连接到其他节点。但是大多数单元格是空的,即稀疏。
由于后续更新「面试专场」的好几篇文章都涉及到 图 这种数据结构,因此打算先普及一下 图 的相关理论支持,如果后面的相关内容有些点不太容易理解,可以查阅此篇文章。本文不建议一口气阅读完毕,可以先浏览一遍,在后续有需要的时候进行查阅即可。
在中国,对于生活在社会底层的人来说,生活和幸存就是一枚分币的两面,它们之间轻微的分界在于方向的不同。
与广度优先搜索不同,深度优先搜索(DFS)类似于树的先序遍历。正如其名称中所暗含的意思一样,这种搜索所遵循的搜索策略是尽可能“深”地搜索一个图。它的基本思想如下:首先访问图中某一起始顶点v,然后由v出发,访问与v邻接且未访问的任一顶点W1,再访问与w1邻接且未被访问任一W2,……重复上述过程。当不能再继续向下访问时,依次退回到最近被访问的顶点,若它还有邻接顶点未被访问过,则从该点开始上述搜索过程,直到图中所有顶点均被访问过止。
图的周游:是一种按某种方式系统地访问图中的所有节点的过程,它使每个节点都被访问且只访问一次。图的周游也称图的遍历。
定义:图(Graph)是由顶点的有穷非空集合和顶点之间边的集合组成,通常表示为:G(V,E),其中,G表示一个图,V是图G中顶点的集合,E是图G中边的集合。
图的遍历和树的遍历类似,我们希望从图中某一顶点出发访遍图中其余顶点,且使每一个顶点仅被访问一次,这一过程就叫做图的遍历(Traverse Graph)。 图的遍历方法一般有两种,第一种是我们在前面讲过的《深度优先遍历(Depth First Search)》,也有称为深度优先搜索,简称为DFS。第二种是广度优先遍历(Breadth First Search),也有称为广度优先搜索,简称为BFS。我们在《队列与广度优先搜索》中已经较为详细地讲述了广度优先搜索的策略,这里不再赘述。如果说图的深度优先遍历类
大家好,又见面了,我是你们的朋友全栈君。 文章目录 1️⃣前言:追忆我的刷题经历 2️⃣算法和数据结构的重要性 👪1、适用人群 🎾2、有何作用 📜3、算法简介 🌲4、数据结构 3️⃣如何开始持续的刷题 📑1、立军令状 👩❤️👩2、培养兴趣 🚿3、狂切水题 💪🏻4、养成习惯 🈵5、一周出师 4️⃣简单数据结构的掌握 🚂1、数组 🎫2、字符串 🎇3、链表 🌝4、哈希表 👨👩👧5、队列 👩👩👦👦6、栈 🌵7、二叉树 🌳8、多叉树 🌲9、森林 🍀10、树状数组 🌍11、图 5️
又要画图了。一到这里就莫名其妙的烦,之前写过的图相关博客已经让我都删了,讲的语无伦次。 希望这篇能写好点。
数据结构是程序的核心之一,可惜本公众内关于数据结构的文章略显不足,于是何小编打算与向柯玮小编一起把数据结构这部分补齐,来满足各位观众大老爷。
图的基本概念中我们需要掌握的有这么几个概念:无向图、有向图、带权图;顶点(vertex);边(edge);度(degree)、出度、入度。下面我们就从无向图开始讲解这几个概念。
深度优先搜索(depth-first search)是对先序遍历(preorder traversal)的推广。”深度优先搜索“,顾名思义就是尽可能深的搜索一个图。想象你是身处一个迷宫的入口,迷宫中的
1、图的遍历 和树的遍历类似,图的遍历也是从某个顶点出发,沿着某条搜索路径对图中每个顶点各做一次且仅做一次访问。它是许多图的算法的基础。 深度优先遍历和广度优先遍历是最为重要的两种遍历图的方法。它们对无向图和有向图均适用。 注意: 以下假定遍历过程中访问顶点的操作是简单地输出顶点。 2、布尔向量visited[0..n-1]的设置 图中任一顶点都可能和其它顶点相邻接。在访问了某顶点之后,又可能顺着某条回路又回到了该顶点。为了避免重复访问同一个顶点,必须记住每个已访问的顶点。为此,可设一布尔向量visited[0..n-1],其初值为假,一旦访问了顶点Vi之后,便将visited[i]置为真。 深度优先遍历(Depth-First Traversal) 1.图的深度优先遍历的递归定义 假设给定图G的初态是所有顶点均未曾访问过。在G中任选一顶点v为初始出发点(源点),则深度优先遍历可定义如下:首先访问出发点v,并将其标记为已访问过;然后依次从v出发搜索v的每个邻接点w。若w未曾访问过,则以w为新的出发点继续进行深度优先遍历,直至图中所有和源点v有路径相通的顶点(亦称为从源点可达的顶点)均已被访问为止。若此时图中仍有未访问的顶点,则另选一个尚未访问的顶点作为新的源点重复上述过程,直至图中所有顶点均已被访问为止。 图的深度优先遍历类似于树的前序遍历。采用的搜索方法的特点是尽可能先对纵深方向进行搜索。这种搜索方法称为深度优先搜索(Depth-First Search)。相应地,用此方法遍历图就很自然地称之为图的深度优先遍历。 2、深度优先搜索的过程 设x是当前被访问顶点,在对x做过访问标记后,选择一条从x出发的未检测过的边(x,y)。若发现顶点y已访问过,则重新选择另一条从x出发的未检测过的边,否则沿边(x,y)到达未曾访问过的y,对y访问并将其标记为已访问过;然后从y开始搜索,直到搜索完从y出发的所有路径,即访问完所有从y出发可达的顶点之后,才回溯到顶点x,并且再选择一条从x出发的未检测过的边。上述过程直至从x出发的所有边都已检测过为止。此时,若x不是源点,则回溯到在x之前被访问过的顶点;否则图中所有和源点有路径相通的顶点(即从源点可达的所有顶点)都已被访问过,若图G是连通图,则遍历过程结束,否则继续选择一个尚未被访问的顶点作为新源点,进行新的搜索过程。 3、深度优先遍历的递归算法 (1)深度优先遍历算法 typedef enum{FALSE,TRUE}Boolean;//FALSE为0,TRUE为1 Boolean visited[MaxVertexNum]; //访问标志向量是全局量 void DFSTraverse(ALGraph *G) { //深度优先遍历以邻接表表示的图G,而以邻接矩阵表示G时,算法完全与此相同 int i; for(i=0;i<G->n;i++) visited[i]=FALSE; //标志向量初始化 for(i=0;i<G->n;i++) if(!visited[i]) //vi未访问过 DFS(G,i); //以vi为源点开始DFS搜索 }//DFSTraverse (2)邻接表表示的深度优先搜索算法 void DFS(ALGraph *G,int i){ //以vi为出发点对邻接表表示的图G进行深度优先搜索 EdgeNode *p; printf("visit vertex:%c",G->adjlist[i].vertex);//访问顶点vi visited[i]=TRUE; //标记vi已访问 p=G->adjlist[i].firstedge; //取vi边表的头指针 while(p){//依次搜索vi的邻接点vj,这里j=p->adjvex if (!visited[p->adjvex])//若vi尚未被访问 DFS(G,p->adjvex);//则以Vj为出发点向纵深搜索 p=p->next; //找vi的下一邻接点 } }//DFS (3)邻接矩阵表示的深度优先搜索算法 void DFSM(MGraph *G,int i) { //以vi为出发点对邻接矩阵表示的图G进行DFS搜索,设邻接矩阵是0,l矩阵 int j; printf("visit vertex:%c",G->vexs[i]);//访问顶点vi visited[i]=TRUE; for(j=0;j<G->n;j++) //依次搜索vi的邻接点 if(G->edges[i][j]==1&&!vi
这篇文章主要来讲一下邻接矩阵 邻接表 链式前向星(本篇需要具备一定图的基础知识,至少邻接矩阵之前要会,这里主要讲解邻接表和链式前向星)
图 数据结构 中 , 每个 结点 是一个 元素 , 可以有 0 个或 多个 相邻元素 , 两个结点 之间的 连接 称为 边 ;
No.15期 图在计算机中的存储 Mr. 王:还有一个很重要的问题,就是图在计算机中的表示。虽然我们看到的图边和点等都是非常直观的,可以画成一个圆圈里带一个数字表示顶点,用一条带有数字的线段或者箭头来表示边,但是在计算机中,显然不能用这种方式来存储它。 小可开玩笑地说:要是把图存成图片,那可太占空间了,而且还不容易读取上面的数字。 Mr. 王:是啊,图已经是对现实世界的一个抽象了,在计算机中我们要对其进行进一步的抽象。你想一想,图由哪两部分组成? 小可:边的集合和顶点的集合。 Mr. 王:在手绘的图中,
图Graph是由顶点(图中的节点被称为图的顶点)的非空有限集合V与边的集合E(顶点之间的关系)构成的。 若图G中的每一条边都没有方向,则称G为无向图。 若图G中的每一条边都有方向,则称G为有向图。
废江博客 , 版权所有丨如未注明 , 均为原创丨本网站采用BY-NC-SA协议进行授权 转载请注明原文链接:图(总目录)
按照右手原则,每次选择上一顶点的最右边的下一顶点,走过一个顶点标记一个顶点,不能走被标记过的顶点,一条路走到黑,直到无路可走,然后回溯。 这个就是先走到最大深度,不能再深入后,再返回到有支路可走的顶点继续深入到最下面。
图的遍历和树的遍历类似,我们希望从图中某一顶点出发访遍图中其余顶点,且使每一个顶点仅被访问一次,这一过程就叫做图的遍历(Traverse Graph)。 图的遍历方法一般有两种,第一种是深度优先遍历(Depth First Search),也有称为深度优先搜索,简称为DFS。第二种是《广度优先遍历(Breadth First Search)》,也有称为广度优先搜索,简称为BFS。我们在《堆栈与深度优先搜索》中已经较为详细地讲述了深度优先搜索的策略,这里不再赘述。我们也可以把图当作一个迷宫,设定一个起始点
在数据结构中,树和图可以说是不可或缺的两种数据结构。其中,对于图来说,最重要的算法可以说就是遍历算法。而搜索算法中,最标志性的就是深度优先算法和广度优先算法。
在树形结构中,实例被称为节点。每个节点都有多个子节点与一个父节点。
顶点和边:图中结点称为顶点,第 i 个顶点记作 vi。两个顶点 vi 和 vj 相关联称作顶点 vi 和顶点 vj 之间有一条边,图中的第 k 条边记作 ek,ek = (vi,vj) 或 <vi,vj>。
一(基本概念) 1.图的定义:图是由顶点的有穷非空集合和顶点之间边的集合组成,通常表示为:G(V,E),其中,G表示一个图,V是图G中顶点的集合,E是图G中边的集合。 2.与线性表、树的比较: (1)线性表中我们把数据元素叫元素,树中将数据元素叫结点,在图中数据元素,我们则称之为顶点。 (2)线性表中可以没有数据元素,称为空表。树中可以没有结点,叫做空树。在图结构中,不允许没有顶点。 (3)线性表中,相邻的数据元素之间具有线性关系,树结构中,相邻两层的结点具有层次关系,而图中,任意两个顶点之间都可能有关系
课程表 你这个学期必须选修 numCourse 门课程,记为 0 到 numCourse-1 。
深度优先遍历 图的深度优先遍历类似于树的先序遍历,首先通过一个指定的节点开始遍历,然后访问第一个邻接点,然后切换到这个节点判断是否是否有邻接点,如果有,判断是否被访问过,如果没有被访问过,则访问这个节
在计算机程序设计中,图也是一种非常常见的数据结构,图论其实是一个非常大的话题,在数学上起源于哥尼斯堡七桥问题。
1-1 无向连通图至少有一个顶点的度为1 错误: 无向连通图考点: 1. 每条边连接两个顶点,所有顶点的度之和等于边数的2倍 2.记住两个特殊的无相连通图模型: A: B: 1-2 用邻接表法存储图
熟知每种数据结构和算法的功能、特点、时间空间复杂度,还是不够的。工程上的问题往往都比较开放,往往需要综合各种因素,比如编码难度、维护成本、数据特征、数据规模等,最终选择一个工程的最合适解,而非理论上的最优解。
领取专属 10元无门槛券
手把手带您无忧上云