首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    多模态PCANet:一种高精度、低复杂度的鲁棒3D活体检测方案

    当下正值新冠肺炎(COVID-19)肆虐全球之际,戴口罩成为了全民阻断病毒传播的最佳方式。然而在人脸部分遮挡或恶劣光照条件下,用户人脸识别或人脸认证的合法访问常常提示活体检测失败,甚至根本检测不到人脸。这是由于目前基于RGB等2D空间的主流活体检测方案未考虑光照、遮挡等干扰因素对于检测的影响,而且存在计算量大的缺点。而数迹智能团队研发的3D SmartToF活体检测方案则可以有效解决此问题。那么什么是活体检测?什么又是3D活体检测?以及怎么实现恶劣环境(如人脸遮挡、恶劣光照等)与人脸多姿态变化(如侧脸、表情等)应用场景下的活体检测呢?本文将会围绕这些问题,介绍数迹智能的最新成果——基于ToF的3D活体检测算法。

    02

    11年C/C+开发经验的大神给小白学习C语言的一些建议,自学不再迷茫!

    我相信,这可能是很多朋友的问题,我以前也有这样的感觉,编程编到一定的时候,发现能力到了瓶颈,既不深,也不扎实,半吊子。比如:你长期地使用Java和.NET ,这些有虚拟机的语言对于开发便利是便利,但是对于程序员来说可能并不太好,原因有两个: 虚拟机屏蔽了操作系统的系统调用,以及很多底层机制。 大量的封装好的类库也屏蔽了很多实现细节。 分享之前我还是要推荐下我自己的C/C++学习交流群:三四零六五一六八七,不管你是小白还是大牛,小编我都挺欢迎,不定期分享干货,包括我自己整理的一份2017最新的C/C++资料和

    05

    实战角度!图片去水印及图片匹配替换几种方法分析

    最近手上有一批图片需要去水印,同时也要对于大图中某个小部分做替换。之前网站的很多图片水印的处理方式都比较简单粗暴,确定水印加在图片上的大致位置,然后做一个不透明度100%的图片覆盖上去,完美解决问题,但是不理想的地方也显而易见,用户观感特别不好。所以,借着这次处理的机会,想把问题根除掉。本文会分四部分,零部分(你没有看错!)主要是自己尝试的路径,如果想简单直接,不失为一种有效方式。第一部分把可以应用的计算机视觉领域可能会用到的算法或者对思路有拓展的算法进行总结,同时对于有些算法的使用过程中遇到的问题,结合我自己的实战经验给出一些实践避坑指南。第二部分,对应第一部分的总结,会给出通用的实现demo,第三部分,会对本文进行总结,相信你在图片匹配替换或者去水印领域遇到相关问题,我的文章都能给你些许思路。

    01

    MATLAB强化学习入门——三、深度Q学习与神经网络工具箱

    上一期的文章《网格迷宫、Q-learning算法、Sarsa算法》的末尾,我们提到了Q学习固有的缺陷:由于智能体(agent)依赖以状态-动作对为自变量的Q函数表(Q Function Table)来形成对当前状态的估计,并以此为依据利用策略π选择动作。Q函数表就必须包含智能体在环境中所可能出现的所有动作-状态对及其对应Q值。显然,当一个多步决策问题变得足够复杂甚至变为连续决策或控制问题时,Q学习本身是无力应对的。例如,对于复杂的多步决策问题,庞大而结构复杂的Q表将变得难以存储和读取;将网格迷宫的长、宽各扩大10倍,Q表则变成原来的100倍。对于连续决策/控制问题时,Q表更是无法记录所有的状态。 那么,如何解决这一问题呢? 一个直截的想法就是,选择某个多元函数,逼近Q表中“自变量”动作-状态对与“因变量”Q值形成的关系。但这样做依然存在问题:对于不同的强化学习问题,Q表中的数据呈现出各异的曲线特性,只有找到符合Q表数据的函数形式,才可能良好的逼近Q表。选择传统函数进行逼近,显然是很难实现编程自动化的。 神经网络(Neural Network)恰恰是这么一种有别于传统函数逼近的解决方案。而从数学的角度讲,神经网络本质上就是一种强大的非线性函数逼近器。将神经网络与Q学习结合起来,就得到了能够解决更复杂问题的Q-Network以及使用深度神经网络的Deep-Q-Network (DQN)。 Deep-Q-Learning的算法究竟是什么样的?浙江大学的《机器学习和人工智能》MOOC有着大致的讲解。而如何实现Deep-Q-Learning?莫烦Python以及北理工的MOOC也给出了Python语言的详细示范。 尽管有关Deep-Q-Learning的程序和讲解已经很多权威且易懂的内容;准确的理解Deep-Q-Learning算法,并在MatLab上实现,则是完成强化学习控制这个最终目标的关键。具体到Deep-Q-Learning的实现上,它不仅与之前的Q-Learning在程序结构上有着相当大的区别,直接将它应用于连续控制问题也会是非常跳跃的一步。因此,在这一期的文章里,问题将聚焦在前后两个问题之间:如何使用神经网络让智能体走好网格迷宫? 将这个问题再细分开来,则包括两部分:

    04
    领券