至少博主目前没有碰到过,因为这个问题在底层的数据集成系统都已经给解决了,小伙伴萌拿到手的 ODS 层表都是已经按照所在地区的时区给格式化好的了。
摘要:本文由社区志愿者陈政羽整理,Apache Flink 社区在 5 月份发布了 1.13 版本,带来了很多新的变化。文章整理自徐榜江(雪尽) 5 月 22 日在北京的 Flink Meetup 分享的《深入解读 Flink SQL 1.13》,内容包括:
随着有赞实时计算业务场景全部以Flink SQL的方式接入,对有赞现有的引擎版本—Flink 1.10的SQL能力提出了越来越多无法满足的需求以及可以优化的功能点。目前有赞的Flink SQL是在Yarn上运行,但是在公司应用容器化的背景下,可以统一使用公司K8S资源池,同时考虑到任务之间的隔离性以及任务的弹性调度,Flink SQL任务K8S化是必须进行的,所以我们也希望通过这次升级直接利社区的on K8S能力,直接将FlinkSQL集群迁移到K8S上。特别是社区在Flink 1.13中on Native K8S能力的支持完善,为了紧跟社区同时提升有赞实时计算引擎的能力,经过一些列调研,我们决定将有赞实时计算引擎由Flink 1.10升级到Flink 1.13.2。
Apache Flink 提供了两种关系型 API 用于统一流和批处理,Table 和 SQL API。
所谓的”时间纪元”就是1970年1月1日0时0分0秒,指的是开始的时间。比如Java类代码:
上一篇介绍了使用sql将流式数据写入文件系统,这次我们来介绍下使用sql将文件写入hive,对于如果想写入已经存在的hive表,则至少需要添加以下两个属性. 写入hive底层还是和写入文件系统一样的,所以对于其他具体的配置参考上一篇.
https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/connectors/streamfile_sink.html
在学习和开发flink的过程中,经常需要准备数据集用来验证我们的程序,阿里云天池公开数据集中有一份淘宝用户行为数据集,稍作处理后即可用于flink学习;
作者:吴云涛,腾讯 CSIG 高级工程师 在这个数据爆炸的时代,企业做数据分析也面临着新的挑战, 如何能够更高效地做数据准备,从而缩短整个数据分析的周期,让数据更有时效性,增加数据的价值,就变得尤为重要。将数据从来源端经过抽取(extract)、转换(transform)、加载(load)至目的端的过程(即 ETL 过程),则需要开发人员则需要掌握 Spark、Flink 等技能,使用的技术语言则是 Java、Scala 或者 Python,一定程度上增加了数据分析的难度。而 ELT 过程逐渐被开发者和
在这个数据爆炸的时代,企业做数据分析也面临着新的挑战, 如何能够更高效地做数据准备,从而缩短整个数据分析的周期,让数据更有时效性,增加数据的价值,就变得尤为重要。 将数据从来源端经过抽取(extract)、转换(transform)、加载(load)至目的端的过程(即 ETL 过程),则需要开发人员则需要掌握 Spark、Flink 等技能,使用的技术语言则是 Java、Scala 或者 Python,一定程度上增加了数据分析的难度。而 ELT 过程逐渐被开发者和数据分析团队所重视,如果读者已经非常熟悉 SQL,采用 ELT 模式完成数据分析会是一个好的选择,比如说逐渐被数据分析师重视的 DBT 工具,便利用了 SQL 来做数据转换。DBT 会负责将 SQL 命令转化为表或者视图,广受企业欢迎。此外使用 ELT 模式进行开发技术栈也相对简单,可以使数据分析师像软件开发人员那样方便获取到加工后的数据。
Flink SQL 内置了很多常见的数据类型,并且也为用户提供了自定义数据类型的能力。
Window 是处理无限流的核心。Flink 认为 Batch 是 Streaming 的一个特例,所以 Flink 底层的引擎是一个流式引擎,在上面实现了流处理和批处理。
1.最近工作中接触到相关的风控项目,里面用到Flink组件做相关的一些流数据或批数据处理,接触后发现确实大数据组件框架比之传统应用开发,部署,运维等方面有很大的优势;
Flink性能调优的第一步,就是为任务分配合适的资源,在一定范围内,增加资源的分配与性能的提升是成正比的,实现了最优的资源配置后,在此基础上再考虑进行后面论述的性能调优策略。
1)Flink 是标准的实时处理引擎,基于事件驱动。而 Spark Streaming 是微批(Micro-Batch)的模型;
其中flink-connector-filesystem_2.11是将Hadoop作为Flink的BucketingSink接入,
本文将解释如何在 Flink 的 Table API 和 SQL 中为基于时间的操作定义时间属性。
由于容器化易管理、易扩容等优点,越来越多的组件都开始迁移到容器上,k8s作为容器化的事实标准,受到了越来越多的人的青睐,由于我们目前很多web开发的组件也是部署到k8s上的,为了后续运维更加方便,我把我们用到的一些大数据组件都迁移到了k8s,包括hive、trino、flink、clickhouse等等。
华米科技是一家基于云的健康服务提供商,拥有全球领先的智能可穿戴技术。在华米科技,数据建设主要围绕两类数据:设备数据和APP数据,这些数据存在延迟上传、更新频率高且广、可删除等特性,基于这些特性,前期数仓ETL主要采取历史全量+增量模式来每日更新数据。随着业务的持续发展,现有数仓基础架构已经难以较好适应数据量的不断增长,带来的显著问题就是成本的不断增长和产出效率的降低。
Flink内置了一些基本数据源和接收器,并且始终可用。该预定义的数据源包括文件,目录和插socket,并从集合和迭代器摄取数据。该预定义的数据接收器支持写入文件和标准输入输出及socket。
作者:陈少龙,腾讯 CSIG 高级工程师 使用 Flink CDC(Change Data Capture) 实现数据同步被越来越多的人接受。本文介绍了在数据同步过程中,如何将 Schema 的变化实时地从 MySQL 中同步到 Flink 程序中去。 背景 MySQL 存储的数据量大了之后往往会出现查询性能下降的问题,这时候通过 Flink SQL 里的 MySQL CDC Connector 将数据同步到其他数据存储是常见的一种处理方式。 例如 CDC 到 ES 实现数据检索,CDC 到 ClikHou
此连接器提供一个 Sink,将分区文件写入 Hadoop FileSystem 支持的任何文件系统。要使用此连接器,添加以下依赖项:
此节就是窗口聚合章节的第三篇,上节介绍了 1.13 window tvf tumble window 实现,本节主要介绍 1.13. window tvf 的一个重磅更新,即 cumulate window。
在大数据的实时处理中,实时的大屏展示已经成了一个很重要的展示项,比如最有名的双十一大屏实时销售总价展示。除了这个,还有一些其他场景的应用,比如我们在我们的后台系统实时的展示我们网站当前的pv、uv等等,其实做法都是类似的。
Flink流式计算的核心概念,就是将数据从Source输入流一个个传递给Operator进行链式处理,最后交给Sink输出流的过程。本篇文章主要讲解Sink端比较强大一个功能类StreamingFileSink,我们基于最新的Flink1.10.0版本进行讲解,之前版本可能使用BucketingSink,但是BucketingSink从Flink 1.9开始已经被废弃,并会在后续的版本中删除,这里只讲解StreamingFileSink相关特性。
阿里双11实时业务量和数据量每年都在大幅增长,去年双11的实时计算峰值达到了创纪录的每秒 40 亿条记录,数据体量也达到了惊人的7 TB 每秒,相当于一秒钟需要读完 500 万本《新华字典》。
摘要:本文介绍了 Dinky 实时计算平台扩展 iceberg 的实践分享。内容包括:
Flink 是一个框架和分布式处理引擎,用于对无界和有界数据流进行有状态计算。并且 Flink 提供了数据分布、容错机制以及资源管理等核心功能。
阿里的双11销量大屏可以说是一道特殊的风景线。实时大屏(real-time dashboard)正在被越来越多的企业采用,用来及时呈现关键的数据指标。并且在实际操作中,肯定也不会仅仅计算一两个维度。由于Flink的“真·流式计算”这一特点,它比Spark Streaming要更适合大屏应用。本文从笔者的实际工作经验抽象出简单的模型,并简要叙述计算流程(当然大部分都是源码)。
实时大屏(real-time dashboard)正在被越来越多的企业采用,用来及时呈现关键的数据指标。并且在实际操作中,肯定也不会仅仅计算一两个维度。由于Flink的“真·流式计算”这一特点,它比Spark Streaming要更适合大屏应用。本文从笔者的实际工作经验抽象出简单的模型,并简要叙述计算流程(当然大部分都是源码)。
Flink SQL 是 Flink 实时计算为简化计算模型,降低用户使用实时计算门槛而设计的一套符合标准 SQL 语义的开发语言。
Flink Table\SQL API 允许用户使用函数进行数据处理、字段标准化等处理。
Flink四大基石分别是:Time (时间)、Window(窗口)、State (状态)、Checkpoint(检查点)。
感谢松鼠会大佬的再三邀请。对我来说这算是一篇命题作文,那么我的答案是什么呢?刚好我也很喜欢另外一个松鼠社区,那么就用两只松鼠来做答案吧,没错,Flink和OpenGauss就是我的答案:
上期带大家用StructredStreaming做了双十一实时报表分析,没看过的朋友可以看看,这是链接: StructredStreaming+Kafka+Mysql(Spark实时计算| 天猫双十一实时报表分析)
上期带大家用StructredStreaming做了双十一实时报表分析,没看过的朋友可以看看,
提到流批一体,不得不提传统的大数据平台 —— Lambda 架构。它能够有效地支撑离线和实时的数据开发需求,但它流和批两条数据链路割裂所导致的高开发维护成本以及数据口径不一致是无法忽视的缺陷。
Maxwell是开源产品,相比Canal的体量也小很多,综合考虑下,在短期内选择了Maxwell.
现在可以在 Services(服务)工具窗口中轻松访问和预览 Docker 镜像层的内容。 从列表选择镜像,选择 Show layers(显示层),然后点击 Analyze image for more information(分析镜像以获得更多信息)。 这将打开层中存储的文件列表,你可以右键点击文件,然后点击 Open File(打开文件)(对于二进制文件,则为 Download File(下载文件)),在编辑器中轻松打开所选文件。
前段时间我们讲解了flink1.11中如何将流式数据写入文件系统和hive [flink 1.11 使用sql将流式数据写入hive],今天我们来从源码的角度深入分析一下。以便朋友们对flink流式数据写入hive有一个深入的了解,以及在出现问题的时候知道该怎么调试。
升级的 IntelliJ 分析器现在提供编辑器内提示,使分析进程更加直观详尽。此版本还包括有助于简化开发工作流的 GitLab 集成,以及其他多项值得关注的更新和改进,如下所述。
我们经常需要在一个时间窗口维度上对数据进行聚合,窗口是流处理应用中经常需要解决的问题。Flink的窗口算子为我们提供了方便易用的API,我们可以将数据流切分成一个个窗口,对窗口内的数据进行处理。本文将介绍如何在Flink上进行窗口的计算。
基础类型只有数值、字符串和时间三种类型,没有 Boolean 类型,但可以使用整型的 0 或 1 替代。ClickHouse 的数据类型和常见的其他存储系统的数据类型对比:
部署Flink之前首先需要安装好JDK,可以选择8或11版本,我这里选择的是JDK11:
Hi,我是王知无,一个大数据领域的原创作者。 Apache Flink 社区发布了 Flink 1.13 的另一个错误修复版本。
期待 Flink 1.9 整合 Flink 和 Blink 的版本。突然心血来潮,打算自己编一版 Blink 玩玩,这篇文章分为两个部分:
既然分析了 Dockerfile,那么也顺带分析一波 docker-entrypoint.sh 脚本都干了什么事。
领取专属 10元无门槛券
手把手带您无忧上云