随着大数据技术的发展,越来越多的企业开始采用分布式系统和云计算技术来处理和存储海量数据。Hadoop是一种开源的分布式系统,可用于存储和处理大规模数据集。MySQL则是最受欢迎的关系型数据库之一,它被广泛应用于企业级应用中。
该文摘要总结:通过分析Flume的日志,发现Flume在MySQL异常关闭的情况下不断提交事务,导致进入无限循环的抛出异常状态。通过查询MySQL的超时配置和HiveServer的日志,发现flume与MySQL之间的断开并非长期无交互,且人为关闭MySQL服务导致连接中断。权宜之计可以在sink的代码中提交事务出异常时,修改下sink的状态为BACK.OFF,防止不断打印日志造成机器磁盘满影响其他服务。
http://www.apache.org/dyn/closer.lua/flume/1.9.0/apache-flume-1.9.0-bin.tar.gz https://github.com/keedio/flume-ng-sql-source/archive/v1.5.2.tar.gz
②NameNode 向Client返回可以可以存数据的 DataNode 这里遵循机架感应原则;
Sink不断地轮询Channel中的事件且批量地移除它们,并将这些事件批量写入到存储或索引系统、或者被发送到另一个Flume Agent。 Sink是完全事务性的。在从Channel批量删除数据之前,每个Sink用Channel启动一个事务。批量事件一旦成功写出到存储系统或下一个Flume Agent,Sink就利用Channel提交事务。事务一旦被提交,该Channel从自己的内部缓冲区删除事件。 Sink组件目的地包括hdfs、logger、avro、thrift、ipc、file、null、HBase、solr、自定义。官方提供的Sink类型已经很多,但是有时候并不能满足实际开发当中的需求,此时我们就需要根据实际需求自定义某些Sink。 官方也提供了自定义source的接口: https://flume.apache.org/FlumeDeveloperGuide.html#sink 根据官方说明自定义MySink需要继承AbstractSink类并实现Configurable接口。 实现相应方法:
Source是负责接收数据到Flume Agent的组件。Source组件可以处理各种类型、各种格式的日志数据,包括avro、thrift、exec、jms、spooling directory、netcat、sequence generator、syslog、http、legacy。官方提供的source类型已经很多,但是有时候并不能满足实际开发当中的需求,此时我们就需要根据实际需求自定义某些source。 官方也提供了自定义source的接口: https://flume.apache.org/FlumeDeveloperGuide.html#source 根据官方说明自定义MySource需要继承AbstractSource类并实现Configurable和PollableSource接口。 实现相应方法:
Flume 数据采集 概述: Flume 是一个数据采集工具,主要可以理解为对日志数据或者其他数据的采集。可以对例如日志数据进行采集传输到我们想要传输的地方,比如从本地文件系统采集数据到HDFS的HIVE目录下获取HDFS的其他目录,提供HIVE进行数据分析。 Flume运行方式为Agent Flume,如果有多个数据源,并且文件系统,则需要启动多个Agent Flume 进行数据采集。 组成: Flume有三大组件:Source,Channel,Sink, Source:指定采集数据源,类型:spooldir(本地系统),MySql, Source 不仅仅可以定义数据源信息,还可以定义检索文件类型,或者自定义文件获取方式 Channel:通道,通过Channel连接Source和Sink,中间作缓冲,提供适配,类型:Memery,File,JDBC Channel 还可以指定文件缓存大小 Sink:指定数据输出目标系统,类型:HDFS,Hive,HBase 如果Sink输出为HDFS,Hive,则还可以指定文件大小,文件前后缀,文件读写周期等。 安装: 1. 解压Flume安装包 2. 配置系统配置文件 flume-site.xml(FADOOP_HOME,HDFS_HOME,ZooKeeper_HOME),之所以分开是因为Flume是Cloudra提供的,他把HDFS与MapReduce分开了,他提供了整合了的HADDOOP 大数据平台运行框架,更加方便部署。也有可能需要指定HBASE,HIVE等。 3. 配置数据采集业务配置文件 ***.xml 4. 启动Flume 运行机制:Flume通过Agent 方式运行数据采集,可以部署在多台机器,主要根据数据源存储形态来具体决定,如果数据源为多个文件系统,则需要运行多套Agent来采集,如果数据源为Mysql,则一个Agent就够了。Flume通过配置文件定义数据的采集-Source阶段,数据缓存-Channel阶段,及数据发送-Sink阶段。首先Source读取数据文件到Channel,Channel缓存起来,达到触发条件(触发条件自己定义或者默认)则会发动到Sink端进行保存,Sink端对发送的数据也定义定,包括存储文件大小,名称,前后缀等。 重点: 业务配置文件 ***.xml : 一个xml文件里面可以定制多套 FCS流程,即在定义时可以同时存在几套FCS流程在XML文件中,我们在启动Flume时需要指定FCS流程的名称来区分 多级Agent:我们可以指定多个Agent进行关联操作,即一个Agent的Sink输出为另一个Agent的Source输入。 比如Agent1为Agent2 提供输入,则Agent1 输出类型为:Avro Source,Qgent1的输入类型可以为任何允许的输出,Agent2的 输入类型为 :Avro SinK,Agent2的输出类型为允许的任何输出。 Flume是基于事务的,可以保证数据的传输时发送与接受的一致性。 Sample:
Flume(水槽) 是 Cloudera 提供的一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统。Flume基于流式架构,灵活简单。 在2009年Flume被捐赠了apache软件基金会,为hadoop相关组件之一。尤其近几年随着flume的不断被完善以及升级版本的逐一推出,特别是flume-ng;,同时flume内部的各种组件不断丰富,用户在开发的过程中使用的便利性得到很大的改善,现已成为apache top项目之一。
“ Flume是一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统。”
今天谈下大数据平台构建中的数据采集和集成。在最早谈BI或MDM系统的时候,也涉及到数据集成交换的事情,但是一般通过ETL工具或技术就能够完全解决。而在大数据平台构建中,对于数据采集的实时性要求出现变化,对于数据采集集成的类型也出现多样性,这是整个大数据平台采集和集成出现变化的重要原因。
本文介绍了大数据计算引擎在数据平台中的重要性,重点讲解了Hadoop、Spark、Flink和ClickHouse这四种引擎的特点和适用场景。通过对比分析,总结了各引擎在性能、易用性、功能丰富度、适用业务场景等方面的差异。同时,分享了在金融、互联网、运营商、公共服务等行业中,各引擎在实时分析、离线批处理、海量数据存储等方面的实践案例。此外,还探讨了各引擎在数据开发、数据治理、数据服务等方面的挑战和机遇。
下载地址:https://archive.cloudera.com/cdh5/cdh/5/hadoop-latest.tar.gz
最近有很多人问我,大数据专业有什么好的毕设项目,我就简单的回复了一下。也有直接问我要源码的....
电信客服分析平台_学习总结 电信项目: 一、idea 项目构建 1、安装 jdk 并配置环境变量。 2、安装 maven,解压离线仓库,并设置 settings。 ** conf 目录下的 setttings.xml 文件复制到离线仓库的 m2 目录下,并修改 mirror 标签以及离线仓库路径。 ** 设置 idea 工具的 maven 选项,涉及到 4 个地方:Work offline(脱网工作/离线模式),以及 3
面试题总结是一个长期工作,面试不停,这份面试题总结就不会停。以后会慢慢把Java相关的面试题、计算机网络等都加进来,其实这不仅仅是一份面试题,更是一份面试参考,让你熟悉面试题各种提问情况,当然,项目部分,就只能看自己了,毕竟每个人简历、实习、项目等都不一样。
一、埋点数据生成模块 1. 事件日志格式及字段含义 2. 启动日志格式及字段含义 3. 说明
本文介绍了如何使用Flume从关系型数据库中抽取数据,并将其写入到HDFS上。主要涉及到Flume的Source、Channel和Sink组件,以及如何使用HBase和Hive作为存储媒介。最后,给出了一个使用该方案进行数据抽取的示例。
实时监控MySQL,从MySQL中获取数据传输到HDFS或者其他存储框架,所以此时需要我们自己实现MySQLSource。 官方也提供了自定义source的接口: 官网说明:https://flume.apache.org/FlumeDeveloperGuide.html#source
Nginx的访问日志记录每条请求的来龙去脉,通过日志可以分析出很多有用的监控信息,如下面的这些信息。
大数据时代这个词被提出已有10年了吧,越来越多的企业已经完成了大数据平台的搭建。随着移动互联网和物联网的爆发,大数据价值在越来越多的场景中被挖掘,随着大家都在使用欧冠大数据,大数据平台的搭建门槛也越来越低。
下面这些都是我在工作中总结出来的,希望对大家有帮助,如果有其他的问题或者解决方法可以留言给我。
大数据平台每天会产生大量的日志,处理这些日志需要特定的日志系统。目前常用的开源日志系统有 Flume 和Kafka两种, 都是非常优秀的日志系统,且各有特点。下面我们来逐一认识一下。
ETL基本上就是数据采集的代表,包括数据的提取(Extract)、转换(Transform)和加载(Load)。数据源是整个大数据平台的上游,数据采集是数据源与数仓之间的管道。在采集过程中针对业务场景对数据进行治理,完成数据清洗工作。
大数据时代这个词被提出已有10年了吧,越来越多的企业已经完成了大数据平台的搭建。随着移动互联网和物联网的爆发,大数据价值在越来越多的场景中被挖掘,随着大家都在使用欧冠大数据,大数据平台的搭建门槛也越来越低。借助开源的力量,任何有基础研发能力的组织完全可以搭建自己的大数据平台。但是对于没有了解过大数据平台、数据仓库、数据挖掘概念的同学可能还是无法顺利完成搭建,因为你去百度查的时候会发现太多的东西,和架构,你不知道如何去选择。今天给大家分享下大数据平台是怎么玩的。
基于flink实时流计算的,金融证券项目,实时大屏展示,预警模块和离线模块的处理。
Source是负责接收数据到Flume Agent的组件。Source组件可以处理各种类型、各种格式的日志数据,包括avro、thrift、exec、jms、spooling directory、netcat、sequence generator、syslog、http、legacy。官方提供的source类型已经很多,但是有时候并不能满足实际开发当中的需求,此时我们就需要根据实际需求自定义某些Source。
连接传统关系型数据库和Hadoop的桥梁 把关系型数据库的数据导入到 Hadoop 系统 ( 如 HDFS、HBase 和 Hive) 中; 把数据从 Hadoop 系统里抽取并导出到关系型数据库里
大数据时代这个词被提出已有10年了吧,越来越多的企业已经完成了大数据平台的搭建。随着移动互联网和物联网的爆发,大数据价值在越来越多的场景中被挖掘,随着大家都在使用欧冠大数据,大数据平台的搭建门槛也越来越低。借助开源的力量,任何有基础研发能力的组织完全可以搭建自己的大数据平台。但是对于没有了解过大数据平台、数据仓库、数据挖掘概念的同学可能还是无法顺利完成搭建,因为你去百度查的时候会发现太多的东西,不知道如何去选择。今天给大家分享下大数据平台是怎么玩的。
学习和使用hadoop有一年了,这里主要分享一下对hadoop整体上的理解,分门别类的介绍一下相关组件,最后提供了建议的学习路线,希望对hadoop的初学者有参考作用。
源码在https://reviews.apache.org/r/50692/diff/1#2 下面的操作需要cd到
图1 从这里可以看出需要我们安装 hdfs, hive, hbase的支持, 只要我们安装了 ,运行时就会自动读取这些应用
上一篇我们已经简单的介绍了Flume,那么这一篇文章博主继续为大家介绍如何实时读取本地/目录文件到HDFS上。
作为互联网公司,网站监测日志当然是数据的最大来源。我们目前的规模也不大,每天的日志量大约1TB。后续90%以上的业务都是需要基于日志来完 成,之前,业务中对实时的要求并不高,最多也就是准实时(延迟半小时以上),因此,我们使用Flume将数据收集到HDFS,然后进行清洗和分析。
单机upd的flume source的配置,100+M/s数据量,10w qps flume就开始大量丢包,因此很多公司在搭建系统时,抛弃了Flume,自己研发传输系统,但是往往会参考Flume的Source-Channel-Sink模式。
发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/152355.html原文链接:https://javaforall.cn
在头条APP海量用户与海量文章之上,使用lambda大数据实时和离线计算整体架构,利用黑马头条用户在APP上的点击行为、浏览行为、收藏行为等建立用户与文章之间的画像关系,通过机器学习推荐算法进行智能推荐
用户行为日志分析是实时数据处理很常见的一个应用场景,比如常见的PV、UV统计。本文将基于Flink从0到1构建一个用户行为日志分析系统,包括架构设计与代码实现。本文分享将完整呈现日志分析系统的数据处理链路,通过本文,你可以了解到:
Flume is a distributed, reliable, and available service for efficiently collecting, aggregating, and moving large amounts of log data. It has a simple and flexible architecture based on streaming data flows. It is robust and fault tolerant with tunable reliability mechanisms and many failover and recovery mechanisms. It uses a simple extensible data model that allows for online analytic application.
1.基本结构介绍 flume是三层架构,agent,collector,storage。每一层都可水平扩展。 其中,agent就是数据采集方;collector是数据整合方;storage是各种数据落地方,如hdfs。 前两者都是由source和sink组成,source是数据读取组件,sink是数据分发组件。 前两者作为不同类型node统一归master管理。可在master shell活web中动态配置。 2.自带的source text 文件,按行发送 tail 探测新产生数据
问题导读: 1.Flume-NG与Scribe对比,Flume-NG的优势在什么地方? 2.架构设计考虑需要考虑什么问题? 3.Agent死机该如何解决? 4.Collector死机是否会有影响? 5.Flume-NG可靠性(reliability)方面做了哪些措施? 美团的日志收集系统负责美团的所有业务日志的收集,并分别给Hadoop平台提供离线数据和Storm平台提供实时数据流。美团的日志收集系统基于Flume设计和搭建而成。 《基于Flume的美团日志收集系统》将分两部分给读者呈现美团日志收集系统
大数据环境安装和配置(Hadoop2.7.7,Hive2.3.4,Zookeeper3.4.10,Kafka2.1.0,Flume1.8.0,Hbase2.1.1,Spark2.4.0等)
Event 是 Flume NG 数据传输的基本单元。类似于 JMS 和消息系统中的消息。一个 Event 由标题和正文组成:前者是键/值映射,后者是任意字节数组。
在过去的这几年时间里,以 Storm、Spark、Flink 为代表的实时计算技术接踵而至。2019 年阿里巴巴内部 Flink 正式开源。整个实时计算领域风起云涌,一些普通的开发者因为业务需要或者个人兴趣开始接触Flink。
日志采集。线上数据一般主要是落地文件或者通过socket传输给另外一个系统。这种情况下,你很难推动线上应用或服务去修改接口,直接向kafka里写数据。这时候你可能就需要flume这样的系统帮你去做传输。
Hadoop生态圈各组件的启动及关闭脚本,虽然有些使用频率不高,不容易记住,这里特地整理出来,大家可以先保存,用的时候就方便了。
flume一般用于日志采集,可以定制很多数据源,减少开发量,基本架构是一个flume进程agent(source、拦截器、选择器、channel<Memory Channel、File Channel>、sink),其中传递的是原子性的event数据;
Source 负责读取数据并写入Channel, Channel 负责存储临时存储数据,起到缓冲的作用,等待Sink读取。 Sink会从Channel拿去数据,并写入目的地(控制台、文件、hdfs、数据库等)
在一个完整的离线大数据处理系统中,除了HDFS+MapReduce+Hive组成分析系统的核心之外,还需要数据采集、结果数据导出、任务调度等不可或缺的辅助系统,而这些辅助工具在hadoop生态体系中都有便捷的开源框架,在此,我们首先来介绍下数据采集部分所用的的开源框架——Flume。
领取专属 10元无门槛券
手把手带您无忧上云