首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

ggplot:从多面图中提取选定的子图

ggplot是一个用于数据可视化的R语言包,它基于图形语法理论,可以创建各种类型的统计图表。ggplot的核心思想是将数据映射到图形属性上,通过图层的叠加和组合来构建图表。

ggplot的优势在于其灵活性和可扩展性。它提供了丰富的图形属性和统计变换函数,可以满足不同数据分析和可视化的需求。同时,ggplot还支持自定义主题和标签,使得图表可以根据个人喜好进行定制。

ggplot的应用场景非常广泛。它可以用于探索性数据分析、统计建模、数据报告和学术研究等领域。无论是数据科学家、统计学家、商业分析师还是学生,都可以通过ggplot来展示和传达数据的信息。

对于ggplot的子图提取,可以通过ggplot的图层叠加和组合功能来实现。可以使用+操作符将多个图层叠加在一起,然后使用facet_wrap()facet_grid()函数来创建子图。facet_wrap()函数可以将数据按照指定的变量进行分组,并在多个子图中展示;facet_grid()函数可以在两个变量的组合下创建子图。

以下是一些腾讯云相关产品和产品介绍链接地址,可以帮助您在云计算领域进行开发和部署:

  1. 云服务器(CVM):提供弹性计算能力,支持多种操作系统和应用场景。详情请参考:腾讯云云服务器
  2. 云数据库 MySQL 版(CDB):提供高可用、可扩展的关系型数据库服务。详情请参考:腾讯云云数据库 MySQL 版
  3. 云对象存储(COS):提供安全可靠的海量数据存储和访问服务。详情请参考:腾讯云云对象存储
  4. 人工智能平台(AI Lab):提供丰富的人工智能算法和模型训练平台。详情请参考:腾讯云人工智能平台

请注意,以上仅是腾讯云的一些相关产品,其他云计算品牌商也提供类似的产品和服务。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • BIB | ATSE: 基于图网络和注意力机制,利用结构信息和进化信息预测多肽的毒性

    今天给大家介绍的是山东大学魏乐义教授课题组在Briefings in Bioinformatics上发表的文章“ATSE: a peptide toxicity predictor by exploiting structural and evolutionary information based on graph neural network and attention mechanism”。多肽药物目前已广泛应用于各种疾病的预防、诊断和治疗,具有广阔的开发前景,出于研究和安全监管的目的,通过计算方法在大量的候选肽中准确预测潜在的毒性肽显得十分重要。作者在文章中提出了一种基于图网络和注意力机制,利用结构信息和进化信息预测多肽的毒性的方法,称为ATSE,该方法包含4个模块:(i)将多肽序列转换为分子图和进化信息的序列处理模块,(ii)从图结构和进化信息提取有效特征的特征提取模块,(iii)优化特征的注意力模块,(iv)输出模块。通过实验表明,所提出的方法显著优于现有的预测方法,并且证明了结构信息和进化信息具有互补性,有效地提高了多肽毒性的预测准确性。

    05

    基于化学元素知识图的分子对比学习

    本文介绍一篇来自浙江大学计算机科学系、杭州创新中心、杭州西湖生命科学与生物医学实验室等联合发表的文章。该文章构建了一个化学元素知识图(KG)来总结元素之间的微观联系,并提出了一个用于分子表征学习的知识增强对比学习(KCL)框架。KCL由三个模块组成。第一个模块是知识引导图增强,对原有的基于化学元素KG的分子图进行扩充。第二个模块是知识感知图表示,对原始分子图使用通用图编码器来提取分子的表示,并使用知识感知消息传递神经网络(Knowledge-aware Message Passing Neural Network, KMPNN)对增强分子图中的复杂信息进行编码。最后一个模块是一个对比目标,以最大化分子图的这两种视图之间的一致性。

    05

    Nat. Mach. Intell. | MolCLR:一个用于分子表征学习的自监督框架

    今天介绍的是卡内基梅隆大学化学工程系的Amir Barati Farimani 教授最新发表在 Nature Machine Intelligence上的文章 ”Molecular contrastive learning of representations via graph neural networks”. 该文提出一种自监督的图神经网络框架MolCLR,利用大量无监督的标签进行自监督学习,有效缓解了因为数据标记有限而阻碍将分子机器学习推广到巨大的化学空间的难题。同时,本文提出了三种全新的分子图的增强方法:原子屏蔽、键删除以及子图删除,所提的分子图增强方法保证了增强时同一分子的一致性最大化以及不同分子一致性的最小化。实验表明,MolCLR 大大改善了 GNN 在各种分子特性基准上的表现。

    04
    领券