如图,本周Epic商城免费送GTA5,而且是一经入库永久拥有,并不是限免几天,而且还是豪华版,自带新手包。直到5月21号前都可以免费领。 新手包具体内容官网有介绍。...然后不出意外Epic商城崩了hhhhh 现在谁还敢说自己没有GTA5了?(滑稽)
选择哪些数据增强技术以及如何应用它们通常取决于具体任务和数据集的特点。数据增强在许多计算机视觉任务中都被广泛使用,包括图像分类、目标检测、分割、人脸识别等。...通过增强数据的多样性,可以提高模型的性能并使其更适应复杂的现实世界场景。人脸图像数据增强对于人脸图像数据增强,有多种方法可以提高模型的鲁棒性和性能。...以下是一些常见的人脸图像数据增强方法:旋转和翻转: 随机旋转或翻转图像,以改变人脸的角度和方向,使模型更具鲁棒性。缩放和裁剪: 随机调整图像的大小并进行裁剪,以模拟不同尺度和视角下的人脸。...风格迁移: 将不同图像的风格应用到人脸图像上,以增加多样性。镜像对称: 镜像对称图像,以生成左右对称的人脸数据。增加噪声数据: 引入合成噪声数据,以增加模型对于嘈杂环境下的鲁棒性。...实现以下是个人实现的一些人脸增强方式,不会对原始人脸数据造成太大的干扰,进而不会引入脏数据:旋转:范围在(-20°, 20°) 表示向左向右旋转def rotate_image(image):
Face Resource知乎有三 提供 一个非常齐全的 (数据集汇总)Face Detection DatasetFDDBpaper: http://vis-www.cs.umass.edu/fddb
大家好,我是冰河~~ 最近,有位读者私信我说,他们公司的项目中配置的数据库密码没有加密,编译打包后的项目被人反编译了,从项目中成功获取到数据库的账号和密码,进一步登录数据库获取了相关的数据,并对数据库进行了破坏...如果文章对你有点帮助,小伙伴们点赞,收藏,评论,分享,走起呀~~ 数据泄露缘由 由于Java项目的特殊性,打包后的项目如果没有做代码混淆,配置文件中的重要配置信息没有做加密处理的话,一旦打包的程序被反编译后...今天,我们就一起来聊聊如何在项目中加密数据库密码,尽量保证数据库密码的安全性。本文中,我使用的数据库连接池是阿里开源的Druid。...数据库密码加密 配置数据库连接池 这里,我就简单的使用xml配置进行演示,当然小伙伴们也可以使用Spring注解方式,或者使用SpringBoot进行配置。 <bean id="dbPasswordCallback" class="com.binghe.dbsource.DBPasswordCallback" lazy-init="
话不多说,上资源: 链接:https://pan.baidu.com/s/1oWE6L0J1s33R_2zfcxiG_A 提取码:b9tf 解压后,先启动GTA5,进入游戏菜单界面 然后打开Xenos...(我也不是计算机专业的,但是我也知道对于大数据量来说,循环if是一个烂代码,计算复杂度是O(n),而哈希是O(1)的算法,速度快了一个台阶) 该黑客大神的原博客如下: https://nee.lv/2021...GTA5以游戏内细节闻名,然而这个烂代码,不禁令人怀疑R星程序员是不是临时雇来的(像cyberpunk2077一样,宣传的钱比开发游戏的钱还要多很多)。
GTA5想必大家都知道吧! 《侠盗猎车手5》(Grand Theft Auto V)又名“给他爱5”,是由Rockstar Games游戏公司出版发行的一款围绕犯罪为主题的开放式动作冒险游戏。
GTA5是一款自由度极高的开放性游戏,该游戏支持自定模型组件,从而让其更加灵活能够定制出一些具有独有特性的动画,甚至可以拍摄简单的电影,在模型替换上有多种替换形式,一种是新增,另一种是直接替换原有的NPC...路人等,这里我研究了一段时间终于搞明白了,GTA5中每个游戏组件的具体功能,从而能够将轻易的实现模型的替换,与新增等,另外GTA5还支持外部脚本扩展,你可以自己编写一些外部功能性脚本,灵活强极高。...这一类文件我们需要将mpnaked这个文件夹整体解压到 F:\Grand Theft Auto V\update\x64\dlcpacks 目录下 然后使用OpenIV打开GTA5中的xml,添加上我们的模型名称...有时会在替换模型的时候,会发现一堆文件,其实这类就属于组合式模组,我们可以更具自己的需要进行组合,从而实现拼接处自己喜欢的角色,例如如下文件 GTA5还支持导演模式,也就是内部提供各种动作,然后通过指定一些脚本参数来实现更具我们的需要做相应的动作
为模型训练准备人脸数据 机器学习最本质的地方就是基于海量数据统计的学习,说白了,机器学习其实就是在模拟人类儿童的学习行为。...机器学习也是如此,要想识别出这张人脸属于谁,我们同样需要大量的本人和其他人的人脸数据,然后将这些数据输入Tensorflow这样的深度学习(深度学习指的是深度神经网络学习,乃机器学习分支之一)框架,利用深度学习框架建立属于我们自己的人脸分类模型...只要数据量足够,分类准确率就能提高到足以满足我们需求的级别。 日本程序员提供的源码利用了keras这个深度学习库来训练自己的人脸识别模型。...前面已经说过,OpenCV对人脸的识别也不是100%准确,因此,我们截取的人脸图像中会有些不合格的,比如误把灯笼当人脸存下来了或者人脸图像很模糊。...在我截取的1000张人脸中大约有几十张这样的,要想确保模型可靠,必须要把这样的图片去掉。这个活只能手动了,没办法。幸运的是,数据量不大,不会耽误太多时间的。
前言开发人脸识别系统,人脸数据集是必须的。所以在我们开发这套人脸识别系统的准备工作就是获取人脸数据集。本章将从公开的数据集到自制人脸数据集介绍,为我们之后开发人脸识别系统做好准备。...公开人脸数据集公开的人脸数据集有很多,本中我们就介绍几个比较常用的人脸数据集。...CelebA人脸数据集官方提供的下载地址:链接:https://pan.baidu.com/s/1zw0KA1iYW41Oo1xZRuHkKQ 密码:zu3w该数据集下载后有3个文件夹,Anno文件夹是存放标注文件的...有些图片有多个标注数据,因为这个数据集的图片中多人脸的,跟前面的数据集不同,前面的都是一张图片只有一张人脸。.../qq_33200967/18929804制作人脸数据集下面我们就介绍如何制作自己的人脸数据集,项目的开源地址:https://github.com/yeyupiaoling/FaceDataset 。
引 CalebA人脸数据集(官网链接)是香港中文大学的开放数据,包含10,177个名人身份的202,599张人脸图片,并且都做好了特征标记,这对人脸相关的训练是非常好用的数据集。...别看只是一堆人脸,他们很贴心地做好了特征标记,也就是说,你可以找到类似下面这些标签: 更贴心的是,他们除了Google盘的下载方式,还为国内研究人员提供了百度网盘的下载链接,这在他们官方都可以找到。...这样我们就有了图片和特征描述了,那怎么筛选出我们要的人脸图片呢? 处理标签 假设我们要把所有人脸分成戴了眼镜的和没戴眼镜的两份集合,来训练从戴眼镜到不戴眼镜的转换。...最后,我统计了一下有无戴眼镜的人脸的数量,结果是: 筛选图片 得到两个记录了有无戴眼镜的图片名集合txt后,我们就可以根据这个来筛选图片了。...这里我们就得到了所有高宽相等的人脸二次裁剪图片。 还要注意的一点是这里只保证了每张图片自身高宽相等,图片之间的尺寸并不一定是同样大小的。 结 这样,就完成了针对一个维度去做二位类处理筛选数据集的工作。
收集样本建立全球最大口罩人脸数据集,并向社会开放,为当前及将来可能的类似公共安全事件智能管控积累的数据资源。...基于口罩人脸数据,设计相应的口罩遮挡人脸检测和识别算法,帮助社区封闭时的人员进出管控,车站,机场的人脸识别闸机以及人脸门禁考勤设备的升级,适应行人口罩蒙面遮挡的应用环境。...id=1kZAIiv34Iav9Vt8BB101FXo4KoEClpx9 已标注数据集说明如下:(区别于github中原始样本)到人脸口罩识别(或检测)数据集,口罩人脸识别样本集必须得包含同一人的多张戴口罩与未戴口罩的人脸图像...(1)真实口罩人脸识别数据集:从网络爬取样本,经过整理,清洗和标注后,含525人的5千张口罩人脸,9万正常人脸。...id=1UlOk6EtiaXTHylRUx2mySgvJX9ycoeBp (2)模拟口罩人脸识别数据集:给公开数据集中的人脸戴上口罩,得到1万人,50万张人脸的模拟口罩人脸数据集。
1、AFLW database 数据下载链接: http://lrs.icg.tugraz.at/research/aflw/ AFLW人脸数据库是一个包括多姿态、多视角的大规模人脸数据库,而且每个人脸都被标注了...AFLW人脸数据库大约包括25000万已手工标注的人脸图片,其中59%为女性,41%为男性,大部分的图片都是彩色,只有少部分是灰色图片。...该数据库非常适合用于人脸识别、人脸检测、人脸对齐等方面的研究,具有很高的研究价值。 ?...数据集包括: 1、对许多受试者的人脸进行高分辨率三维扫描。 2、不同分辨率、不同条件和不同缩放级别的视频序列。 ?...4、CelebA dataset 数据下载链接: http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html CelebFaces属性数据集(CelebA)是一个大规模的人脸属性数据集
原文博客:Doi技术团队 链接地址:https://blog.doiduoyi.com/authors/1584446358138 初心:记录优秀的Doi技术团队学习经历 前言 开发人脸识别系统,人脸数据集是必须的...所以在我们开发这套人脸识别系统的准备工作就是获取人脸数据集。本章将从公开的数据集到自制人脸数据集介绍,为我们之后开发人脸识别系统做好准备。...公开人脸数据集 公开的人脸数据集有很多,本中我们就介绍几个比较常用的人脸数据集。...CelebA人脸数据集 官方提供的下载地址:https://pan.baidu.com/s/1eSNpdRG#list/path=%2F 该数据集下载后有3个文件夹,Anno文件夹是存放标注文件的,Eval...有些图片有多个标注数据,因为这个数据集的图片中多人脸的,跟前面的数据集不同,前面的都是一张图片只有一张人脸。
最近我要对人脸数据进行特征提取,免不了获取人脸数据集,第一次运行加载人脸数据集函数需要下载数据集下载好久,当然加速下载也是很简单的。...先源码分析一波 获取人脸数据集很简单,调用 sklearn.datasets.fetch_lfw_people 函数就行了,第一次运行这个函数会从网络上下载人脸数据集,下载的很慢。...果不其然,下载数据集直接调用的是_fetch_remote 函数!不用解释了,再去看一下 _fetch_remote 源码,如图所示。 ?
1.哥伦比亚大学公众人物脸部数据库 数据集链接:http://m6z.cn/5DlIR9 PubFig Dataset 是一个大型人脸数据集,主要用于人脸识别和身份鉴定,其涵盖互联网上 200 人的 58,797...2.CelebA人脸数据集 数据集链接:http://m6z.cn/60EW0n CelebFaces Attributes Dataset (CelebA) 是一个大规模的人脸属性数据集,包含超过 20...该数据集可用作以下计算机视觉任务的训练和测试集:人脸属性识别、人脸识别、人脸检测、地标(或人脸部分)定位以及人脸编辑与合成。...6.PersonID人脸识别数据集 数据集链接:http://m6z.cn/5So6vR 该数据集所选用的人脸照片均来自于两部比较知名的电视剧,《吸血鬼猎人巴菲》和《生活大爆炸》。...9.CASIA 人脸图像数据集 数据集链接:http://m6z.cn/5vPwio CASIA 人脸图像数据库版本 5.0(或 CASIA-FaceV5)包含 500 个对象的 2,500 个彩色人脸图像
1061700625/OpenMV_Face_Recognition ''' >> author: SXF >> email: songxf1024@163.com >> description: 用LBP特征进行人脸识别...,可进行人脸注册、人脸检测与人脸识别 Pin7高电平一次,触发人脸注册;默认低电平 UART1(Pin1)输出调试信息 UART3(Pin4)输出识别结果,当识别成功后,返回“Find It...,但由于SD卡内无文件,无法匹配人脸 ?...按下F1按键,进入人脸注册模式,连续拍5张照存入SD卡(拍摄时绿灯快闪50ms,拍摄完绿灯闪1000ms) ? 再识别,可完成人脸识别(红灯闪1000ms)。...Oceanconnect后台收到数据 ? Oceanconnect后台可下发指令至IoT平台 ?
一、概述 人脸检测的目标是找出图像中所有的人脸对应的位置,算法的输出是人脸外接矩形在图像中的坐标,可能还包括姿态如倾斜角度等信息。常用的人脸检测数据库包括:FDDB和WIDER FACE。...,遮挡等难点,是目标最常用的数据库。...需要考虑人品能不能抵挡住利益的诱惑) 有其他隔离数据集无限制训练再FDDB测试,和FDDB十折交叉验证两种,鉴于FDDB图像数量较少,近几年论文提交结果也都是无限制训练再FDDB测试方式,所以,如果要和...鉴于大家都采用无限制训练加FDDB测试的方式,detector会继承训练数据集的标注风格,继而影响contROC,所以discROC比较重要,contROC看看就行了,不用太在意。...有以下特点有: 图像分辨率普遍偏高,所有图像的宽都缩放到1024,最小标注人脸10*10,都是彩色图像; 每张图像的人脸数据偏多,平均12.2人脸/图,密集小人脸非常多; 分训练集train/验证集
要求:使用10-fold交叉验证方法实现SVM的对人脸库识别,列出不同核函数参数对识别结果的影响,要求画对比曲线。...0.数据说明预处理 下载AT&T人脸数据(http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html),解压缩后为40个文件夹,每个文件夹是一个人的...10张人脸照片。...,对数据使用PCA降维处理,其中设定降维后的特征数目时遇到了问题,参考资料中n_components设定为150,但是该数据集采用大的该值后识别率会非常低,即虽然可以百分百识别出训练集人脸,但无法预测识别出新的脸...SVM训练与识别 对降维后的数据进行训练与识别。
本文主要介绍了一种简单的人脸检测方法,通过随机裁剪图像并训练神经网络来检测人脸。该方法可以用于小规模数据集的人脸检测,并且可以通过调整代码来适应不同大小的数据集...
不多说了,直接代码吧: 生成AFLW_ann.txt的代码,其中包含图像名称 和 图像中人脸的位置(x,y,w,h); ** AFLW中含有aflw.aqlite文件。...f: f.writelines("%s\n" % line for line in list_annotation) AFLW图片都整理到flickr文件下(含0,1,2三个文件),生成人脸的程序...(并且对人脸进行了左右镜像): import os from PIL import Image from PIL import ImageFile # ImageFile.LOAD_TRUNCATED_IMAGES
领取专属 10元无门槛券
手把手带您无忧上云