之前找实习还有秋招的时候看了不少大神的帖子,现在也来回馈一下~ 感觉这方面帖子也不多。
上一篇介绍了用开源数据挖掘软件weka做关联规则挖掘,weka方便实用,但不能处理大数据集,因为内存放不下,给它再多的时间也是无用,因此需要进行分布式计算,mahout是一个基于hadoop的分布式数据挖掘开源项目(mahout本来是指一个骑在大象上的人)。掌握了关联规则的基本算法和使用,加上分布式关联规则挖掘后,就可以处理基本的关联规则挖掘工作了,实践中只需要把握业务,理解数据便可游刃有余。 安装mahout 骑在大象上的侠士必然需要一头雄纠纠的大象,不过本文不解绍大象hadoop,所以我假定已经
1.数据挖掘主要是做算法还是做应用?分别都要求什么? 这个问题太笼统,基本上算法和应用是两个人来做的,可能是数据挖掘职位。做算法的比较少,也比较高级,其实所谓做算法大多数时候都不是设计新的算法(这个可以写论文了),更多的是技术选型,特征工程抽取,最多是实现一些已经有论文但是还没有开源模块的算法等,还是要求扎实的算法和数据结构功底,以及丰富的分布式计算的知识的,以及不错的英文阅读和写作能力。但即使是这样也是百里挑一的,很难找到。绝大读书数据挖掘岗位都是做应用,数据清洗,用现成的库建模,如果你自己不往算法或者
月薪2.5万没有那么难。 尤其是做为一名开发者,这个目标很容易实现,只要你在2018年把握好这一点。 目前,普通的Hadoop大数据工程师起薪也在25K/月,数据挖掘、机器学习、人工智能相关人才薪资
数据挖掘工具是使用大数据挖掘技术从互联网的海量数据中发现、采集并挖掘出有有价值数据一种软件。利用特定的技术,例如:Hadoop、Spark……实现对互联网非机构化的大数据进行挖掘并获得正确、有价值数据的一种快速、便捷的方法。
很多朋友对大数据行业心向往之,却苦于不知道该如何下手。作为一个零基础大数据入门学习者该看哪些书?今天给大家推荐一位知乎网友挖矿老司机的指导贴,作为参考。
以后想从事数据挖掘行业,但不清楚数据挖掘工程师的工作到底是做什么? 如果仅仅只是用excel,sas,python,r语言等工具来用现有的算法进行数据挖掘,总感觉比软件工程师的工作量要小,那为什么很多数据挖掘工程师的招聘要求还特别高? 是否很多数据挖掘工程师还需要对具体场景设计新的算法和方案来进行数据挖掘? 如果现在要学习的话是否还需要学习hadoop,hive等之类的分布式应用的平台? 对于数据挖掘,以下为个人的理解: 数据挖掘,从字面上理解,就是在数据中找到有用的东
以后想从事数据挖掘行业,但不清楚数据挖掘工程师的工作到底是做什么? 如果仅仅只是用excel,sas,python,r语言等工具来用现有的算法进行数据挖掘,总感觉比软件工程师的工作量要小,那为什么很多数据挖掘工程师的招聘要求还特别高? 是否很多数据挖掘工程师还需要对具体场景设计新的算法和方案来进行数据挖掘? 如果现在要学习的话是否还需要学习hadoop,hive等之类的分布式应用的平台? 对于数据挖掘,以下为个人的理解: 数据挖掘,从字面上理解,就是在数据中找到有用的
随着大数据的爆发,中国IT业内环境也将面临新一轮的洗牌,不仅是企业,更是从业人员转型可遇而不可求的机遇。如果将IT人士统一比作一条船上的海员,大数据就是最大的浪潮,借浪潮之势而为之,可成功从普通程序员转行成为大数据专家。 在美国,大数据工程师平均年薪达17.5万美元,在中国顶尖的互联网公司里,大数据工程师的薪酬比同级别的其他职位高出30%以上。DT时代来得太突然了,国内发展势头很猛,而大数据相关的人才却非常地有限,在未来若干年内都会是供不应求的状况,因此程序员们,你们的春天到了! 当然,专行也并非一朝一
有奖转发活动 回复“抽奖”参与《2015年数据分析/数据挖掘工具大调查》有奖活动。 R是GNU的一个开源工具,具有S语言血统,擅长统计计算和统计制图。由Revolution Analytics发起的一个开源项目RHadoop将R语言与Hadoop结合在一起,很好发挥了R语言特长。广大R语言爱好者借助强大工具RHadoop,可以在大数据领域大展拳脚,这对R语言程序员来说无疑是个喜讯。作者从一个程序员的角度对R语言和Hadoop做了一次详细的讲解。 以下为原文: 前言 写过几篇关于RHadoop的技术性文章
大数据是一个含义广泛的术语,是指数据集,如此庞大而复杂的,他们需要专门设计的硬件和软件工具进行处理。该数据集通常是万亿或EB的大小。这些数据集收集自各种各样的来源:传感器,气候信息,公开的信息,如杂志,报纸,文章。大数据产生的其他例子包括购买交易记录,网络日志,病历,军事监控,视频和图像档案,及大型电子商务。
下面请看详细介绍: Hadoop Hadoop 是一个能够对大量数据进行分布式处理的软件框架。但是 Hadoop 是以一种可靠、高效、可伸缩的方式进行处理的。Hadoop 是可靠的,因为它假设计算元
无论你是想从事大数据相关职位的职场小白,还是准备往高处走的牛牛。小白有了这些在校招中过关斩将,牛牛们温故知新跨过业务壁垒。 B格高的HR,或者想要个助理的大数据工作者也可以了解下同行是怎么筛选人。 非主流的可以拿来撩HR妹纸,折腾面试的小鲜肉………………………… 数据分析 1、提前想好答案 数据分析师面试常见的77个问题 http://www.ppvke.com/Answer/question/25782 (典型的面试题,有些题是与业务结合的,不深不浅,忽悠漂亮HR妹纸必不可缺的神器。HR也可以看看提升
大数据是一个含义广泛的术语,是指数据集,如此庞大而复杂的,他们需要专门设计的硬件和软件工具进行处理。该数据集通常是万亿或EB的大小。这些数据集收集自各种各样的来源:传感器、气候信息、公开的信息、如杂志、报纸、文章。大数据产生的其他例子包括购买交易记录、网络日志、病历、事监控、视频和图像档案、及大型电子商务。大数据分析是在研究大量的数据的过程中寻找模式,相关性和其他有用的信息,可以帮助企业更好地适应变化,并做出更明智的决策。 Hadoop Hadoop 是一个能够对大量数据进行分布式处理的软件框架。但是
R是GNU的一个开源工具,具有S语言血统,擅长统计计算和统计制图。由Revolution Analytics发起的一个开源项目RHadoop将R语言与Hadoop结合在一起,很好发挥了R语言特长。广大R语言爱好者借助强大工具RHadoop,可以在大数据领域大展拳脚,这对R语言程序员来说无疑是个喜讯。作者从一个程序员的角度对R语言和Hadoop做了一次详细的讲解。 以下为原文: 前言 写过几篇关于RHadoop的技术性文章,都是从统计的角度,介绍如何让R语言利用Hadoop处理大数据。今天决定反过来,从计算机
大数据是一个含义广泛的术语,是指数据集,如此庞大而复杂的,他们需要专门设计的硬件和软件工具进行处理。该数据集通常是万亿或EB的大小。这些数据集收集自各种各样的来源:传感器,气候信息,公开的信息,如杂志,报纸,文章。大数据产生的其他例子包括购买交易记录,网络日志,病历,军事监控,视频和图像档案,及大型电子商务。 在大数据和大数据分析,他们对企业的影响有一个兴趣高涨。大数据分析是研究大量的数据的过程中寻找模式,相关性和其他有用的信息,可以帮助企业更好地适应变化,并做出更明智的决策。 一 Hadoop Hadoo
一般我们把数据科学与大数据领域的角色分成4类:数据架构师、数据分析师、数据科学家、数据工程师。以下是热门的大数据岗位:
大数据是一个含义广泛的术语,是指数据集,如此庞大而复杂的,他们需要专门设计的硬件和软件工具进行处理。该数据集通常是万亿或EB的大小。这些数据集收集自各种各样的来源:传感器,气候信息,公开的信息,如杂志,报纸,文章。大数据产生的其他例子包括购买交易记录,网络日志,病历,军事监控,视频 和图像档案,及大型电子商务。
总结一下我读过的机器学习/数据挖掘/数据分析方面的书,有的适合入门,有的适合进阶,没有按照层次排列,先总结一下,等总结的差不多了再根据入门--->进阶分块写。下面列的书基本上我写的都是读完过的,不然不敢写,怕误人子弟 = = 数据分析篇 实习的时候只会Matlab,公司小,没钱买正版,所以领导要我两星期把R学会,当时看的有这些书 1.R语言实战 https://book.douban.com/subject/20382244/ 评价:很好的入门书,从安装、入门、基本的统计分析,作图命令,以及常见的分类、回
随着大数据的爆发,中国IT业内环境也将面临新一轮的洗牌,不仅是企业,更是从业人员转型可遇而不可求的机遇。如果将IT人士统一比作一条船上的海员,大数据就是最大的浪潮,借浪潮之势而为之,可成功从IT程序员转行成为大数据专家。 在美国,大数据工程师平均年薪达17.5万美元,在中国顶尖的互联网公司里,大数据工程师的薪酬比同级别的其他职位高出30%以上。DT时代来得太突然了,国内发展势头很猛,而大数据相关的人才却非常地有限,在未来若干年内都会是供不应求的状况,因此程序员们,你们的春天到了! 当然,专
互联网在经历前几年的繁荣之后,现在开始进入寒冬,资本家不再像以前那样大胆地投资,纷纷攥紧自己的口袋。但是从整个互联网行业来看,大数据却一枝独秀,逐渐崛起。
Java已不是当年,想单靠Java技术拿到30万年薪,已经很难。 但做为一名Java开发,优势也非常明显,只要你抓住这个机会,就能轻松实现这个小目标。 目前,普通的Hadoop大数据工程师起薪也在2
总结一下我读过的机器学习/数据挖掘/数据分析方面的书,有的适合入门,有的适合进阶,没有按照层次排列,先总结一下,等总结的差不多了再根据入门--->进阶分块写。下面列的书基本上我写的都是读完过的,不然不敢写,怕误人子弟 = =,持续更新ing~ 数据分析 实习的时候只会Matlab,公司小,没钱买正版,所以领导要我两星期把R学会,当时看的有这些书 1.R语言实战 评价:很好的入门书,从安装、入门、基本的统计分析,作图命令,以及常见的分类、回归、降维等方法都有写 推荐指数:五颗星 2.数据分析-R语言实战 评
IT派 - {技术青年圈} 持续关注互联网、大数据、人工智能领域 互联网在经历前几年的繁荣之后,现在开始进入寒冬,资本家不再像以前那样大胆地投资,纷纷攥紧自己的口袋。但是从整个互联网行业来看,大数据却一枝独秀,逐渐崛起。 我们正处于一个大数据飞速发展的时代,我们所做的一切事,不论是在互联网中或者是互联网之外,都会留下数字的痕迹。比如刷卡购物,网络搜索,手机上网,乃至在网上每一个小小的点击都会被一一记录下来。各行各业,大数据技术应用也越来越广泛,对于大数据人才的需求也越来越大。 如果你学的是大数据,那么恭喜
大数据人才缺口达150万 全球最顶尖管理咨询公司麦肯锡(McKinsey)出具的一份详细分析报告显示,预计到2018年,大数据或者数据工作者的岗位需求将激增,其中大数据科学家的缺口在140000到190000之间,对于懂得如何利用大数据做决策的分析师和经理的岗位缺口则将达1500000! 事实上,大数据工作者可以施展拳脚的领域非常广泛,从国防部、互联网创业公司到金融机构,到处需要大数据项目来做创新驱动。数据分析或数据处理的岗位报酬也非常丰厚,在硅谷,入门级的数据科学家的收入已经是6位数了(美元)。 大数据专
大数据人才缺口达150万 全球最顶尖管理咨询公司麦肯锡(McKinsey)出具的一份详细分析报告显示,预计到2018年,大数据或者数据工作者的岗位需求将激增,其中大数据科学家的缺口在140000到190000之间,对于懂得如何利用大数据做决策的分析师和经理的岗位缺口则将达1500000! 事实上,大数据工作者可以施展拳脚的领域非常广泛,从国防部、互联网创业公司到金融机构,到处需要大数据项目来做创新驱动。数据分析或数据处理的岗位报酬也非常丰厚,在硅谷,入门级的数据科学家的收入已经是6位数了(美元)。 如大
学习大数据分析与应用课程的首要任务,是先了解统计与建模方法和数据挖掘方法所呈现出来的效果,然后依次学习Excel数据处理及编程、MySQL数据库的简单操作及Hadoop的基础知识。从而为进阶、提高打好基础。
关键字全网搜索最新排名 【机器学习算法】:排名第一 【机器学习】:排名第一 【Python】:排名第三 【算法】:排名第四 关于数据挖掘 提到收据挖掘(Data Mining, DM),很多想学习的同学大多数都会问我: 什么是数据挖掘? 怎么培养数据分析的能力? 如何成为一名数据科学家? (简称数据挖掘工程师为DMer) 我认为,在学习DM之前你至少需要明白以下几点: 数据初期的准备通常占整个数据挖掘项目工作量的70%左右; 数据挖掘本身融合了统计学、数据库和机器学习等学科,并不是新的技术; 数据挖掘技术更
数据挖掘:What?Why?How? 磨刀不误砍柴工。在学习数据挖掘之前应该明白几点: 数据挖掘目前在中国的尚未流行开,犹如屠龙之技。 数据初期的准备通常占整个数据挖掘项目工作量的70%左右。 数据挖掘本身融合了统计学、数据库和机器学习等学科,并不是新的技术。 数据挖掘技术更适合业务人员学习(相比技术人员学习业务来的更高效) 数据挖掘适用于传统的BI(报表、OLAP等)无法支持的领域。 数据挖掘项目通常需要重复一些毫无技术含量的工作。 如果你阅读了以上内容觉得可以接受,那么继续往下看。 学习一门技术要和行业
说起大数据,有个成语可以来形容一下它的现状:遍地开花! 如今,在国内,只要是个IT公司(说的是非传统行业),出去的时候,感觉要是说自己公司没有涉足大数据都不好意思。 所以,现在的情况大部分是这样的:一个创业公司哪怕只有十多人的开发团队,也非得整一个大数据小组出来,我们不止要做大数据离线处理,还要做离线处理,不止有数据分析报表,我们还得进行深度的数据挖掘,做到精准的个性化推荐,流弊的数据预测! 偶滴娘亲啊,寥寥数人,不止要搭起一整套完整的数据收集、数据传输、数据离线实时处理,不止要维护hadoop集群、s
Hadoop是一个由Apache开发的开源分布式计算框架,它能够处理大规模数据并行处理任务,支持大规模数据存储和处理。Hadoop的核心组件包括分布式文件系统HDFS和分布式计算框架MapReduce,它们使得Hadoop可以在廉价的硬件上并行地处理大量数据。Hadoop还包括很多相关的项目和子项目,如Pig、Hive、HBase等,它们都是围绕Hadoop构建的数据处理和查询工具。Hadoop已经成为了大数据领域的标准技术之一,受到了很多企业和组织的广泛应用。
在当前国家倡导的“质量强国”战略中,计量起到极其关键的作用,计量技术的发展支撑着社会发展的各个方面;计量技术的创新引领了科技和产业的创新。而在大数据时代,数据已成为企业不可或缺的战略性资源。如何运用“工业4.0”、“中国制造2025”思维和大数据等高新技术,发挥以计量数据为主的数据在经营、管理、决策中的作用,整合计量机构的数据资源,创新性地挖掘数据在应用方面的价值,为社会提供计量信息公共服务,为企业提供计量业务的增值服务,为行政单位提供计量业务的统计分析和预研预判服务,已成为一个非常重要且紧迫的课题。
问题:如何系统地学习数据挖掘? 虽然是本科毕业,但是在看数据挖掘方面的算法理论时经常感觉一些公式的推导过程如天书一般,例如看svm的数学证明,EM算法..,感觉知识跳跃比较大, 是我微积分学的不好还是
读者问:虽然是本科毕业,但是在看数据挖掘方面的算法理论时经常感觉一些公式的推导过程如天书一般,例如看svm的数学证明,EM算法..,感觉知识跳跃比较大, 是我微积分学的不好还是中间有什么好的教材补充一
看数据挖掘方面的算法理论时经常感觉一些公式的推导过程如天书一般,例如看svm的数学证明,EM算法..,感觉知识跳跃比较大,那么数据挖掘系统的学习过程是怎么样磨刀不误砍柴工。在学习数据挖掘之前应该明白几点: 数据挖掘目前在中国的尚未流行开,犹如屠龙之技。 数据初期的准备通常占整个数据挖掘项目工作量的70%左右。 数据挖掘本身融合了统计学、数据库和机器学习等学科,并不是新的技术。 数据挖掘技术更适合业务人员学习(相比技术人员学习业务来的更高效) 数据挖掘适用于传统的BI(报表、OLAP等)无法支持的领域
数据挖掘:What?Why?How? 这个问题思考了很久,作为过来人谈一谈,建议先看下以前的一些回答。 什么是数据挖掘? 怎么培养数据分析的能力? 如何成为一名数据科学家? 磨刀不误砍柴工。在学习数据
问题:如何系统地学习数据挖掘? 虽然是本科毕业,但是在看数据挖掘方面的算法理论时经常感觉一些公式的推导过程如天书一般,例如看svm的数学证明,EM算法..,感觉知识跳跃比较大, 是我微积分学的不好还是中间有什么好的教材补充一下,数据挖掘系统的学习过程是怎么样的,应该看那些书(中文最好)? 回答者:Han Hsiao 数据挖掘:What?Why?How? 这个问题思考了很久,作为过来人谈一谈,建议先看下以前的一些回答。 什么是数据挖掘? 怎么培养数据分析的能力? 如何成为一名数据科学家? 磨刀不误砍柴工。在学
大家好,又见面了,我是你们的朋友全栈君。 hadoop与大数据的关系? 大数据技术正渗透到各行各业。作为数据分布式处理系统的典型代表,Hadoop已成为该领域的事实标准。但Hadoop并不等于
数据产品和数据密不可分作为数据产品经理理解数据从产生、存储到应用的整个流程,以及大数据建设需要采用的技术框架Hadoop是必备的知识清单,以此在搭建数据产品时能够从全局的视角理解从数据到产品化的价值。本篇文章从三个维度:
AI时代,在招聘网站公布的招聘数据中,“算法”、“机器学习”、“数据挖掘”相关岗位平均招聘薪资高于其余同等学历、工龄要求的技术岗位30%以上甚至更高,吸引了一大波人开始学习数据挖掘。
Hadoop 是一个能够对大量数据进行分布式处理的软件框架。具有可靠、高效、可伸缩的特点。
求助各位数据挖掘前辈~~ 还有几天就马上研一了,我学的是数据挖掘方向,具体方向应该是微博文本类,这段时间学的挺乱的,一直没有个方向的感觉。假期期间把老师推荐的《web数据挖掘》看了一大半,java又看了一遍,发现也总是忘,可能还是练得少。看了一些python,前面的部分跟java还是很像的,看的很快,到了模块那,又感觉学的好痛苦。 我想请教一下各位前辈,如果研究生毕业想从事数据挖掘方向,我们是俩年研究生,也就是明年9月份就要签工作了。 1 我应该学些什么,哪些书籍或者技能是必须要会的呢,或者是对找工作有利
新一轮毕业季即将到来,就业问题又将成为讨论的热点,今年会是大学生们就业的春天吗?据权威数据显示,2015年全国普通高校毕业生人数达到749万,2016年全国普通高校毕业生人数达到765万,2017年的毕业生总人数再创新高,达到700万。大学生们面临的就业形势依然严峻,就业的春天不会来临。 那么毕业生们应该怎么做呢?我们先来分析下就业形势。 在全国仅34%企业招聘活动保持稳定的现状下,每年毕业的大学生人数正在不断的上涨,一个岗位可能存在上百的竞争者。 在这样残酷的就业环境下,求职者更应该找好自己的方向。土木
一、数据分析-入门篇 1.1《谁说菜鸟不会数据分析》 作者:张文霖, 刘夏璐, 狄松 简介:本书按照数据分析工作的完整流程来讲解。全书共8章,分别讲解数据分析必知必会的知识、数据处理技巧、数据展现的技
1. Consumer behaviour is the study of when,why,how and where people do or don't buy a product。 用户行为一般指用户通过中间资源,购买、使用和评价某种产品的记录。同时辅以用户、资源、产品自身及环境的信息。 用户行为记录一般可以表示一组属性的集合:{属性1,属性2,...,属性N} 2. 用户行为分析主要是研究对象用户的行为。数据来源包括用户的日志信息、用户主体信息和外界环境信息。通过特定的工具对用户在互联网/移动互联
分享人:卢亿雷 Admaster技术副总裁 PPT概要: 围绕广告营销数据流程、广告监测技术特点、广告监测数据差异、广告数据挖掘平台架构、ADH在广告营销数据挖掘的特、AdMaster数据分析平台六点展开。 ADH是针对广告行业做出来的Hadoop,有以下五个特点: 日志信息或数据放在Hadoop里,会自动生成所需要的数据格式; 内置广告算法,MR可以提供Hadoop服务; 对于HBase做出改造,例如项目排序、项目索引等做出相应优化; 优化Hadoop调度系统; 集成Spark。 在广告监测数据中,不同I
现在大数据这么火,各行各业想转行大数据,那么问题来了,该往哪方面发展,哪方面最适合自己?
大数据的出现催生出产业人才缺口瓶颈,在大数据挖掘项目的实施方面,被调查公司普遍缺乏相关的技术能力。75%以上的公司表示在人员和培训方面存在障碍,会大数据挖掘技术的人才很热门,但是比较难找而且昂贵,会 Hadoop 技术的数据挖掘人才更是奇缺。
本片博客介绍大数据相关的开源系统以及他们对应的一句话简介, 对于各位想大概了解大数据都有哪些开源系统的同学有帮助。各种相关开源系统简介: 如下是Apache基金支持的开源软件 hdfs 跟GFS类
领取专属 10元无门槛券
手把手带您无忧上云