Hadoop集群: Hadoop是一个开源的分布式计算框架,主要用于处理大规模数据集。它基于MapReduce编程模型,可以将计算任务分布到多个节点上并行处理。Hadoop集群通常包括以下几个核心组件:
MySQL集群: MySQL是一个关系型数据库管理系统,MySQL集群是指多个MySQL实例协同工作,提供高可用性和可扩展性。MySQL集群通常包括以下几种类型:
Hadoop集群的优势:
MySQL集群的优势:
Hadoop集群的类型与应用场景:
MySQL集群的类型与应用场景:
Hadoop集群常见问题及解决方法:
MySQL集群常见问题及解决方法:
Hadoop MapReduce示例代码:
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
import java.util.StringTokenizer;
public class WordCount {
public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}
public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
MySQL主从复制配置示例:
-- 主节点配置
server-id = 1
log_bin = /var/log/mysql/mysql-bin.log
binlog_do_db = mydatabase
-- 从节点配置
server-id = 2
relay_log = /var/log/mysql/mysql-relay-bin.log
log_bin = /var/log/mysql/mysql-bin.log
binlog_do_db = mydatabase
领取专属 10元无门槛券
手把手带您无忧上云