温馨提示:如果使用电脑查看图片不清晰,可以使用手机打开文章单击文中的图片放大查看高清原图。 Fayson的github: https://github.com/fayson/cdhproject 提示:代码块部分可以左右滑动查看噢 1.文档编写目的 ---- 在集群中使用HBase,默认是没有开启授权认证,任何用访问HBase集群都可以进行任何操作(如:disable table、drop table)等等。对于未启用Kerberos认证的集群,即使开启了HBase授权,用于也可以伪造身份访问集群服务。因此
安装流程可借鉴此处,同理spark安装也可借鉴此处 具体参考:http://dblab.xmu.edu.cn/blog/install-hbase/
本文结合两个实战场景就基于 HBase 的大数据存储做了简单的分析,并对 HBase 的原理做了简单的阐述。
大数据中HBase是一个分布式的、面向列的开源数据库,Hbase的名字的来源是Hadoop database,即hadoop数据库, HBase中的所有数据文件都存储在Hadoop HDFS文件系统上
最近工作有点忙,所以文章更新频率低了点,希望大家可以谅解,好了,言归正传,下面进入今天的主题: 如何使用scala+spark读写Hbase 软件版本如下: scala2.11.8 spark2.1.0 hbase1.2.0 公司有一些实时数据处理的项目,存储用的是hbase,提供实时的检索,当然hbase里面存储的数据模型都是简单的,复杂的多维检索的结果是在es里面存储的,公司也正在引入Kylin作为OLAP的数据分析引擎,这块后续有空在研究下。 接着上面说的,hbase存储着一些实时的数据,前两周新需求
本文介绍了如何使用HBase和ZooKeeper实现一个高可用的分布式系统。首先介绍了HBase和ZooKeeper的基本概念和架构,然后详细讲解了如何使用HBase和ZooKeeper实现一个高可用的分布式系统。最后通过一个具体的实例展示了如何使用HBase和ZooKeeper实现分布式系统,并提供了相应的代码示例。
本文主要介绍 Hbase 常用的三种简单的容灾备份方案,即CopyTable、Export/Import、Snapshot。分别介绍如下:
本文的HBase安装是在Hadoop已经安装好的基础上实现的,所以之前要导出JAVA_HOME、HADOOP_HOME( 单机模式不需要,伪分布式模式和分布式模式需要)等环境变量以及配置好SSH互信等。 0 公共配置 导出HBase的环境变量
特别说明:该专栏文章均来源自微信公众号《大数据实战演练》,欢迎关注!
内容来源:2018 年 09 月 15 日,平安科技数据平台部大数据高级工程师邓杰在“中国HBase技术社区第五届MeetUp ——HBase应用与发展”进行《HBase应用与实践》的演讲分享。IT 大咖说(微信id:itdakashuo)作为独家视频合作方,经主办方和讲者审阅授权发布。
前面一篇文章介绍了Kafka的具体内容,今天讲述一下HBase相关的知识。首先HBase作为大数据发展初期伴随Google三大论文问世的一个组件,在今天依旧被广泛的应用,今天我们来仔细的分析一下HBase的内部原理,了解一下HBase的具体内幕,以便在工作中更好使用它。以下内容涉及到的源码基于HBase 的Master分支编译出的最新的3.0.0版本。
提示:如果直接drop表,会报错:ERROR: Table student is enabled. Disable it first.
物理上来说,HBase是由三种类型的服务器以主从模式构成的。这三种服务器分别是:Region server,HBase HMaster,ZooKeeper。
最近为了方便开发,在自己的虚拟机上搭建了三节点的Hadoop集群与Hbase集群,hadoop集群的搭建与zookeeper集群这里就不再详细说明,原来的笔记中记录过。这里将hbase配置参数进行相应整理,方便日后使用。
HBase数据模型(1) HBase数据模型(2) 1.0 HBase的特性 Table HBase以表(Table)的方式组织数据,数据存储在表中。 Row/Column 行(Row)
要在 Spring Boot 项目中实现 HBase 的功能,首先需要理解原理和作用,然后通过实际操作将其集成到 Spring Boot 项目中。以下是从理论到实践的详细步骤:
HBase是一个开源的非关系型分布式数据库,设计初衷是为了解决大量结构化数据存储与处理的需求。
最近看了好多粉丝的面试题,于是总结出关于HBase相关的面试题,今天分享给大家,认真阅读,记得收藏。
注意:一次只能为一个表的一行数据的一个列,也就是一个单元格添加一个数据,所以直接用shell命令插入数据效率很低,在实际应用中,一般都是利用编程操作数据。
HBase 是什么?HBase 是在 Hadoop 分布式文件系统(简称:HDFS)之上的分布式面向列的数据库。而且是 2007 最初原型,历史悠久。
从图中可以看出 Hbase 是由 Client、Zookeeper、Master、HRegionServer、HDFS 等几个组件组成,下面来介绍一下几个组件的相关功能:
HBase 主要用ZooKeeper来实现 HA 选举与主备集群主节点的切换、系统容错、meta-region 管理、Region 状态管理和分布式 SplitWAL 任务管理等。
熟悉HBase的同学应该知道,HBase是基于一种LSM-Tree(Log-Structured Merge Tree)存储模型设计的,写入路径上是先写入WAL(Write-Ahead-Log)即预写日志,再写入memstore缓存,满足一定条件后执行flush操作将缓存数据刷写到磁盘,生成一个HFile数据文件。随着数据不断写入,磁盘HFile文件就会越来越多,文件太多会影响HBase查询性能,主要体现在查询数据的io次数增加。为了优化查询性能,HBase会合并小的HFile以减少文件数量,这种合并HFile的操作称为Compaction,这也是为什么要进行Compaction的原因。
hbase1.0.0版本提供了一些让人激动的功能,并且,在不牺牲稳定性的前提下,引入了新的API。虽然 1.0.0 兼容旧版本的 API,不过还是应该尽早地来熟悉下新版API。并且了解下如何与当下正红的 Spark 结合,进行数据的写入与读取。鉴于国内外有关 HBase 1.0.0 新 API 的资料甚少,故作此文。
(1) Hbase一个分布式的基于列式存储的数据库,基于Hadoop的hdfs存储,zookeeper进行管理。
HBase ACL 可以实现不同的用户、Group与Namespace、Table、ColumnFamily层级的数据权限控制
HBase在不开启授权的情况下,任何账号对HBase集群可以进行任何操作,比如disable table/drop table/major compact等等。
在使用 HBase 时,如果你的数据量达到了数十亿行或数百万列,此时能否在查询中返回大量数据将受制于网络的带宽,即便网络状况允许,但是客户端的计算处理也未必能够满足要求。在这种情况下,协处理器(Coprocessors)应运而生。它允许你将业务计算代码放入在 RegionServer 的协处理器中,将处理好的数据再返回给客户端,这可以极大地降低需要传输的数据量,从而获得性能上的提升。同时协处理器也允许用户扩展实现 HBase 目前所不具备的功能,如权限校验、二级索引、完整性约束等。
初接触Hadoop技术的朋友肯定会对它体系下寄生的个个开源项目糊涂了,我敢保证Hive,Pig,HBase这些开源技术会把你搞的有些糊涂,不要紧糊涂的不止你一个,如某个菜鸟的帖子的疑问,when to use Hbase and when to use Hive?....请教了^_^没关系这里我帮大家理清每个技术的原理和思路。
NoSQL是一些分布式非关系型数据库的统称,它采用非关系的数据模型,弱化模式或表结构、弱化完整性约束、弱化甚至取消事务机制,可能无法支持,或不能完整的支持SQL语句。
在分布式系统中,负载均衡是一个非常重要的功能,HBase通过Region的数量实现负载均衡,即通过hbase.master.loadbalancer.class实现自定义负载均衡算法。下面将为大家剖析HBase负载均衡的相关内容以及性能指标。
1、/hbase/.META. 就是存储1中介绍的 META 表的存储路径。 2、/hbase/.archive HBase 在做 Split或者 compact 操作完成之后,会将 HFile 移到.archive 目录中,然后将之前的 hfile 删除掉,该目录由 HMaster 上的一个定时任务定期去清理。 3、/hbase/.corrupt 存储HBase做损坏的日志文件,一般都是为空的。 4、/hbase/.hbck HBase 运维过程中偶尔会遇到元数据不一致的情况,这时候会用到提供的 hbck 工具去修复,修复过程中会使用该目录作为临时过度缓冲。 5、/hbase/WAL 大家都知道 HBase 是支持 WAL(Write Ahead Log) 的,HBase 会在第一次启动之初会给每一台 RegionServer 在.log 下创建一个目录,若客户端如果开启WAL 模式,会先将数据写入一份到.log 下,当 RegionServer crash 或者目录达到一定大小,会开启 replay 模式,类似 MySQL 的 binlog。 6、/hbase/oldlogs 当.logs 文件夹中的 HLog 没用之后会 move 到.oldlogs 中,HMaster 会定期去清理。 7、/hbase/.snapshot hbase若开启了 snapshot 功能之后,对某一个用户表建立一个 snapshot 之后,snapshot 都存储在该目录下,如对表test 做了一个 名为sp_test 的snapshot,就会在/hbase/.snapshot/目录下创建一个sp_test 文件夹,snapshot 之后的所有写入都是记录在这个 snapshot 之上。 8、/hbase/.tmp 当对表做创建或者删除操作的时候,会将表move 到该 tmp 目录下,然后再去做处理操作。 9、/hbase/hbase.id 它是一个文件,存储集群唯一的 cluster id 号,是一个 uuid。 10、/hbase/hbase.version 同样也是一个文件,存储集群的版本号,貌似是加密的,看不到,只能通过web-ui 才能正确显示出来。
Hbase 中的每张表都通过行键(rowkey)按照一定的范围被分割成多个子表(HRegion),默认一个HRegion 超过256M 就要被分割成两个,由HRegionServer管理,管理哪些 HRegion 由 Hmaster 分配。HRegion 存取一个子表时,会创建一个 HRegion 对象,然后对表的每个列族(Column Family)创建一个 store 实例, 每个 store 都会有 0 个或多个 StoreFile 与之对应,每个 StoreFile 都会对应一个HFile,HFile 就是实际的存储文件,一个 HRegion 还拥有一个 MemStore实例。
读: 找到要读数据的region所在的RegionServer,然后按照以下顺序进行读取:先去BlockCache读取,若 BlockCache没有,则到Memstore读取,若Memstore中没有,则到HFile中去读。 写: 找到要写数据的region所在的RegionServer,然后先将数据写到WAL(Write-Ahead Logging,预写日志系统)中,然后再将数据写到Memstore等待刷新,回复客户端写入完成。
关于HugeGraph,官方资料是这样介绍的,它是一款易用、高效、通用的开源图数据库系统(Graph Database), 实现了 Apache TinkerPop3 框架及完全兼容 Gremlin 查询语言, 具备完善的工具链组件,助力用户轻松构建基于图数据库之上的应用和产品。HugeGraph 支持百亿以上的顶点和边快速导入,并提供毫秒级的关联关系查询能力(OLTP), 并可与 Hadoop、Spark 等大数据平台集成以进行离线分析(OLAP)。
HBase的原型是Google的BigTable论文,受到了该论文思想的启发,目前作为Hadoop的顶级项目来开发维护,用于支持结构化的数据存储。
原文:https://blog.51cto.com/12445535/2359652
Python在数据工程师和数据科学家中被广泛使用,以解决从ETL / ELT管道到构建机器学习模型的各种问题。Apache HBase是用于许多工作流程的有效数据存储系统,但是专门通过Python访问此数据可能会很困难。对于想要利用存储在HBase中的数据的数据专业人士而言,最新的上游项目“ hbase-connectors”可以与PySpark一起使用以进行基本操作。
HBase Snapshots允许你对一个表进行快照(即可用副本),它不会对Region Servers产生很大的影响,它进行复制和 恢复操作的时候不包括数据拷贝。导出快照到另外的集群也不会对Region Servers产生影响。 下面告诉你如何使用Snapshots功能 1.开启快照支持功能,在0.95+之后的版本都是默认开启的,在0.94.6+是默认关闭 <property> <name>hbase.snapshot.enabled</name> <value>true</value
既然是Write-Ahead-Log,为何先写内存再写WAL? 先写内存的原因:HBase提供了一个MVCC机制,来保障些数据阶段的数据可见性。先写MemStore再写WAL,是为了一些特殊场景下,内存中的数据能够更及时的返回。如果先写WAL失败的话,MemStore助攻的数据会被回滚。
对大数据领域有一定了解的小伙伴对HBase应该不会陌生,HBase是Apache基金会开源的一个分布式非关系型数据库,属于Hadoop的组件。它使用Java编写,需运行于HDFS文件系统之上。HBase与Hadoop中的其他组件一样,可以运行在廉价硬件上,并可提供数10亿行 X 数百万列的大数据存储、管理能力,以及随机访问和实时读/写能力。HBase的设计模型参考了Google的Bigtable,可以说是Bigtable的开源实现版本。
默认情况下,AutoFlush是开启的,当每次put操作的时候,都会提交到HBase server,大数据量put的时候会造成大量的网络IO,耗费性能
在HBase中,表格的Rowkey按照字典排序,Region按照RowKey设置split point进行shard,通过这种方式实现的全局、分布式索引,成为了其成功的最大的砝码。图1显示了HBase
Hive的本质其实就相当于将HDFS中已经存储的文件在Mysql中做了一个双射关系,以方便使用HQL去管理查询。
不想用程序语言开发MapReduce的朋友,熟悉SQL的朋友可以使用Hive开离线的进行数据处理与分析工作。
2)无模式:每行都有一个可排序的主键和任意多的列,列可以根据需要动态的增加,同一张表中不同的行可以有截然不同的列;
在前面的文章里,介绍过 HBase 的入门操作知识,但对于正考虑将 HBase 用于生产系统的项目来说还是远远不够。
领取专属 10元无门槛券
手把手带您无忧上云