近期腾讯云某家大客户的hbase master一直无法启动,经过仔细诊断之后发现是由于hbase的WAL文件非常多(达到15TB),导致hbase在zk的节点(存储WAL文件信息的节点)超过4096*1024 默认大小,无法正常提供服务。因此,hbase master无法正常启动。通过增加zk节点的大小参数,并且优化WAL文件,最终解决该问题。
HBase的原型是Google的BigTable论文,受到了该论文思想的启发,目前作为Hadoop的顶级项目来开发维护,用于支持结构化的数据存储。
最近,在用Flink SQL批量写HBase,做调度。主要遇到了三个大坑,在接下来的三篇文章中逐个记录。三个大坑分别是,
如果数据吞吐量较大,且一次查询返回的数据量较大,则Rowkey 必须进行散列化处理,同时建表必须进行预分区处理。对于以get为主的查询场景,则将表进行hash预分区,均匀分布;如果以scan为主,则需要兼顾业务场景设计rowkey,在满足查询需求的前提下尽量对数据打散并进行负载均衡。
在CAP能力模型表现方面,hbase主要是面向CP的应用系统,针对数据写入可以满足强一致性需求,从客户端视角来看写入成功之后的数据是即时可见的。然而hbase的CP模型目前还存在很大的短板,比如当有服务节点出现宕机事件时,需要经历很长时间的MTTR过程,耗时主要体现在以下两个方面:
物理上来说,HBase是由三种类型的服务器以主从模式构成的。这三种服务器分别是:Region server,HBase HMaster,ZooKeeper。
摘要:HBase自带许多运维工具,为用户提供管理、分析、修复和调试功能。本文将列举一些常用HBase工具,开发人员和运维人员可以参考本文内容,利用这些工具对HBase进行日常管理和运维。
近期腾讯云的一家大客户频繁出现HBase regionserver 挂掉,影响业务正常使用。通过调整堆栈大小、gc优化、超时时间等都无法解决该问题。经过细致并综合分析hbase regionserver、hbase master以及 zookeeper的日志,发现了问题所在:tickTime设置导致hbase超时时间错误。
本文介绍了HBase的WAL(Write Ahead Log)机制,包括其线程模型、多生产者单消费者模型以及日志落盘策略。HBase通过WAL机制将随机写转化为顺序写,提高了读写性能和可靠性。同时,WAL机制也保证了HBase的容错能力,即当发生故障时,可以从最近的备份中恢复数据。
进程按角色分为Master和RegionServer,其中Master负责DDL操作,比如建表、删表,而RegionServer负责DML操作,比如数据的读写操作等。从数据视图上讲,HBase中的Table会按Range切分为多个Region,然后由不同的RegionServer来负责对外提供服务。
MemStore是HBase非常重要的组成部分,深入理解MemStore的运行机制、工作原理、相关配置,对HBase集群管理以及性能调优有非常重要的帮助。
HBase 是一款面向列存储,用于存储处理海量数据的 NoSQL 数据库。它的理论原型是 Google 的 BigTable 论文。你可以认为 HBase 是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统。
HBase架构组件 从物理结构上讲,HBase由三种类型的服务器构成主从式架构。Region Servers为数据的读取和写入提供服务。当访问数据时,客户端直接和Region Servers通信。Region的分配,DDL (create, delete tables)操作有HBase Master进程处理。Zookeeper是HDFS的一部分,维护着一个活动的集群。 Hadoop DataNode 存储着Region Server所管理的数据。所有的HBase数据存储在HDFS的文件中。Region S
Apache HBase 是基于 Hadoop 构建的一个分布式的、可伸缩的海量数据存储系统。常被用来存放一些海量的(通常在TB级别以上)、结构比较简单的数据,如历史订单记录,日志数据,监控 Metrics 数据等等,HBase 提供了简单的基于 Key 值的快速查询能力。
最近在网上看到一篇很好的讲 HBase 架构的文章(原文:https://mapr.com/blog/in-depth-look-hbase-architecture/),简洁明了,图文并茂,所以这里将其翻译成中文分享。图片引用的是原文中的,技术性术语会尽量使用英文,在比较重要的段落后面都会加上我个人理解的点评。
大家在使用HBase的过程中,总是面临性能优化的问题,本文从HBase客户端参数设置的角度,研究HBase客户端数据批量插入性能优化的问题。事实胜于雄辩,数据比理论更有说服力,基于此,作者设计了这么一个HBase数据插入性能优化实测实验,希望大家用自己的服务器跑出的结果,给自己一个值得信服的结论。
HDFS是一种开源的分布式文件系统,基于常见商用硬件构建海量大规模存储集群,提供极低的存储成本,极大的存储容量支持。 HDFS提供高可靠性的数据保障,通常采用三副本冗余存储数据到不同的机器来实现容灾备份能力。 HBase基于HDFS实现存储计算分离架构的分布式表格存储服务
Hbase 中的每张表都通过行键 (rowkey) 按照一定的范围被分割成多个子表(HRegion),默认一个 HRegion 超过 256M 就要被分割成两个,由 HRegionServer 管理,管理哪些 HRegion 由 Hmaster 分配。 HRegion 存取一个子表时,会创建一个 HRegion 对象,然后对表的每个列族 (Column Family) 创建一个 store 实例, 每个 store 都会有 0个或多个 StoreFile 与之对应,每个 StoreFile 都会对应一个 HFile , HFile 就是实际的存储文件,因此,一个 HRegion 还拥有一个 MemStore 实例。
为了避免第三方非法访问我们的重要数据,我们可以给HBase配置加密算法,目前HBase只支持使用aes加密算法,用于保护静态的HFile和WAL数据。
温馨提示:本文内容较长,如果觉得有用,建议收藏。另外记得分享、点赞、在看,素质三连哦!
客户端,例如:发出HBase操作的请求。例如:之前我们编写的Java API代码、以及HBase shell,都是CLient
1、/hbase/.META. 就是存储1中介绍的 META 表的存储路径。 2、/hbase/.archive HBase 在做 Split或者 compact 操作完成之后,会将 HFile 移到.archive 目录中,然后将之前的 hfile 删除掉,该目录由 HMaster 上的一个定时任务定期去清理。 3、/hbase/.corrupt 存储HBase做损坏的日志文件,一般都是为空的。 4、/hbase/.hbck HBase 运维过程中偶尔会遇到元数据不一致的情况,这时候会用到提供的 hbck 工具去修复,修复过程中会使用该目录作为临时过度缓冲。 5、/hbase/WAL 大家都知道 HBase 是支持 WAL(Write Ahead Log) 的,HBase 会在第一次启动之初会给每一台 RegionServer 在.log 下创建一个目录,若客户端如果开启WAL 模式,会先将数据写入一份到.log 下,当 RegionServer crash 或者目录达到一定大小,会开启 replay 模式,类似 MySQL 的 binlog。 6、/hbase/oldlogs 当.logs 文件夹中的 HLog 没用之后会 move 到.oldlogs 中,HMaster 会定期去清理。 7、/hbase/.snapshot hbase若开启了 snapshot 功能之后,对某一个用户表建立一个 snapshot 之后,snapshot 都存储在该目录下,如对表test 做了一个 名为sp_test 的snapshot,就会在/hbase/.snapshot/目录下创建一个sp_test 文件夹,snapshot 之后的所有写入都是记录在这个 snapshot 之上。 8、/hbase/.tmp 当对表做创建或者删除操作的时候,会将表move 到该 tmp 目录下,然后再去做处理操作。 9、/hbase/hbase.id 它是一个文件,存储集群唯一的 cluster id 号,是一个 uuid。 10、/hbase/hbase.version 同样也是一个文件,存储集群的版本号,貌似是加密的,看不到,只能通过web-ui 才能正确显示出来。
(1) Hbase一个分布式的基于列式存储的数据库,基于Hadoop的hdfs存储,zookeeper进行管理。
作者介绍:熊训德(英文名:Sundy),16年毕业于四川大学大学并加入腾讯。目前在腾讯云从事 hadoop 生态相关的云存储和计算等后台开发,喜欢并专注于研究大数据、虚拟化和人工智能等相关技术。
在这篇博客文章中,我们主要深入看一下H Base 的体系结构以及在 NoSQL 数据存储解决方案主要优势。
最近知识星球有人问浪尖,自己的hbase集群元数据丢失了,但是数据还在,是否能够修复,其实这种情况下利用数据的hfile去修复元数据很常见,也有很多时候我们是生成hfile加载进hbase。
该机制用于数据的容错和恢复: 每个HRegionServer中都有一个HLog对象,HLog是一个实现Write Ahead Log的类,在每次用户操作写入MemStore的同时,也会写一份数据到HLog文件中(HLog文件格式见后续),HLog文件定期会滚动出新的,并删除旧的文件(已持久化到StoreFile中的数据)。当HRegionServer意外终止后,HMaster会通过Zookeeper感知到,HMaster首先会处理遗留的 HLog文件,将其中不同Region的Log数据进行拆分,分别放到相应region的目录下,然后再将失效的region重新分配,领取 到这些region的HRegionServer在Load Region的过程中,会发现有历史HLog需要处理,因此会Replay HLog中的数据到MemStore中,然后flush到StoreFiles,完成数据恢复。
Hbase是一种分布式存储的数据库,技术上来讲,它更像是分布式存储而不是分布式数据库,它缺少很多RDBMS系统的特性,比如列类型,辅助索引,触发器,和高级查询语言等待。
写缓存,K-V在MemStore中进行排序,达到阈值之后才会flush到StoreFile,每次flush生成一个新的StoreFile。
对大数据领域有一定了解的小伙伴对HBase应该不会陌生,HBase是Apache基金会开源的一个分布式非关系型数据库,属于Hadoop的组件。它使用Java编写,需运行于HDFS文件系统之上。HBase与Hadoop中的其他组件一样,可以运行在廉价硬件上,并可提供数10亿行 X 数百万列的大数据存储、管理能力,以及随机访问和实时读/写能力。HBase的设计模型参考了Google的Bigtable,可以说是Bigtable的开源实现版本。
5、Hbase的表在物理存储上,是按照列族来分割的,不同列族的数据一定存储在不同的文件中
WAL(Write Ahead Log)预写日志,是数据库系统中常见的一种手段,用于保证数据操作的原子性和持久性。
三、在Cloudera Manager中添加Phoenix服务(前提是已经安装了HBase服务)
一个系统上线之后,开发和调优将一直贯穿系统的生命周期中,HBase也不列外。这里学习下HBase的调优。
HBase 是一个基于 Google BigTable 论文设计的高可靠性、高性能、可伸缩的分布式存储系统。 网上关于 HBase 的文章很多,官方文档介绍的也比较详细,本篇文章不介绍 HBase 基本的细节。
2、管理和分配HRegion,比如在HRegion split时分配新的HRegion;在HRegion Server退出时迁移其负责的HRegion到其他HRegionServer上。
Zookeeper:HBase 通过 Zookeeper 来做 Master 的高可用、 RegionServer 的监控、存储Hbase元数据(如哪个表存储在哪个RegionServer上)以及集群配置的维护等工作。
Zookeeper: Master 的高可用、RegionServer 的监控、元数据的入口以及集群配置的维护等
Hbase Rowkey CF 架构 概述 预分区及Rowkey设计 学习笔记介绍了Region类似于数据库的分片和分区的概念,每个Region负责一小部分Rowkey范围的数据的读写和维护,Region包含了对应的起始行到结束行的所有信息。master将对应的region分配给不同的RergionServer,由RegionSever来提供Region的读写服务和相关的管理工作。
本文对hbase集群进行优化,主要涵盖硬件和操作系统,网络通信,JVM,查询,写入,核心服务,配置参数,zookeeper,表设计等多方面。 我们对hbase的应用主要是用户画像,根据自身使用场景做一些优化。难免有片面之处。 一、软硬件优化: 1. 配置内存,cpu HBase的LSM树结构,缓存机制和日志机制对内存消耗非常大,所以内存越大越好。 其中过滤器,数据压缩,多条件组合扫描等场景都是cpu密集型的,所以cpu也要够强悍 2. 操作系统 选择主流linux发行版,JVM推荐用Sun
上篇文章提起关于HBase插入性能优化设计到的五个参数,从参数配置的角度给大家提供了一个性能测试环境的实验代码。根据网友的反馈,基于单线程的模式实现的数据插入毕竟有限。通过个人实测,在我的虚拟机环境下,单线程插入数据的值约为4w/s。集群指标是:CPU双核1.83,虚拟机512M内存,集群部署单点模式。本文给出了基于多线程并发模式的,测试代码案例和实测结果,希望能给大家一些启示:
既然是Write-Ahead-Log,为何先写内存再写WAL? 先写内存的原因:HBase提供了一个MVCC机制,来保障些数据阶段的数据可见性。先写MemStore再写WAL,是为了一些特殊场景下,内存中的数据能够更及时的返回。如果先写WAL失败的话,MemStore助攻的数据会被回滚。
人资绩效系统数据预处理平台,负责接收所有上游业务量数据。具有数据量大、非结构化数据、更新单个业务量数据,查询性能要求高等特性。通常技术上可以选择OSS、MySql数据库、ES等存储方案。其中OSS云存储方案,查询性能与更新单个业务量数据上无法满足。MySql数据库如果每对接一种业务量创建一个表的方式,对于更新查询等方面复杂度较高,不利于系统扩展。而ES存储量与查询量都可以满足,但更新单个字段不够友好,且ES成本较高。
要想明白为什么产生 HBase,就需要先了解一下 Hadoop 存在的限制?Hadoop 可以通过 HDFS 来存储结构化、半结构甚至非结构化的数据,它是传统数据库的补充,是海量数据存储的最佳方法,它针对大文件的存储,批量访问和流式访问都做了优化,同时也通过多副本解决了容灾问题。
领取专属 10元无门槛券
手把手带您无忧上云