HBase客户端API提供了Write Buffer的方式,即批量提交一批Put对象到HBase服务端。本文将结合HBase相关源码,分析如何在实际项目中合理设置和使用它。
HBase的主要客户端接口是由org.apache.hadoop.hbase.client包中的HTable类提供的,通过这个类,用户可以完成向HBase存储和检索数据,以及删除无效数据之类的操作。
原文:https://blog.51cto.com/12445535/2359652
比如,在旧版本的(<0.92)Hbase 中,统计数据表的总行数,需要使用 Counter 方法,执行一次 MapReduce Job 才能得到。虽然 HBase 在数据存储层中集成了 MapReduce,能够有效用于数据表的分布式计算。然而在很多情况下,做一些简单的相加或者聚合计算的时候, 如果直接将计算过程放置在 server 端,能够减少通讯开销,从而获 得很好的性能提升
HBase是一个高可靠、高性能、面向列、可伸缩的分布式数据库,底层基大数据存储与管理于Hadoop的HDFS来存储数据。 HBase的系统架构包括客户端、Zookeeper服务器、HMaster服务器、和RegionServer服务器这些组件。HBase集群也是主从模式,HMaster是主服务器,regionServer是从服务器,在集群中可允许有多个regionserver。
本文目的是介绍使用C++如何操作HBase。从HBase 0.94开始,HBase新增thrift2,本文只介绍和讨论thrift2相关的。hbase-1.1.2使用的thrift估计是thrift-0.9.0版本。
所谓Standalone模式HBase,就是只启动一个JVM进程,在这个进程中同时启动了多个后台角色,如:HMaster,单个HRegionServer,以及ZooKeeper服务。
为了避免第三方非法访问我们的重要数据,我们可以给HBase配置加密算法,目前HBase只支持使用aes加密算法,用于保护静态的HFile和WAL数据。
本文首先对 HBase 做简单的介绍,包括其整体架构、依赖组件、核心服务类的相关解析。再重点介绍 HBase 读取数据的流程分析,并根据此流程介绍如何在客户端以及服务端优化性能,同时结合有赞线上 HBase 集群的实际应用情况,将理论和实践结合,希望能给读者带来启发。如文章有纰漏请在下面留言,我们共同探讨共同学习。
参考博客:Hadoop HBase概念学习系列之HBase里的Zookeeper(二十一)
java 远程连接 HBase 客户端,大体分为两种方式。一种是长连接,一种是短连接。
该文介绍了 HBase 的 RPC 实现原理和调度过程,包括 RPC 的基本使用、HBase 的 RPC 框架、RPC 的调度过程以及重要的参数配置。
一个系统上线之后,开发和调优将一直贯穿系统的生命周期中,HBase也不列外。这里学习下HBase的调优。
HBase中的一级索引指数据在写入region时,会根据rowkey进行排序后写入,之后regionserver在加载region时,会自动为当前region的rowkey创建一个LSM树的索引,方便对当前region,rowkey的查询。
前面一篇文章介绍了Kafka的具体内容,今天讲述一下HBase相关的知识。首先HBase作为大数据发展初期伴随Google三大论文问世的一个组件,在今天依旧被广泛的应用,今天我们来仔细的分析一下HBase的内部原理,了解一下HBase的具体内幕,以便在工作中更好使用它。以下内容涉及到的源码基于HBase 的Master分支编译出的最新的3.0.0版本。
1、由客户端发起读取数据的请求, 首先先连接 zookeeper , 从zookeeper获取hbase:meta表被哪个regionServer所管理meta表中主要记录了 hbase中各个表有那些region,以及每个region被哪个regionServer所管理hbase中非常特殊的元数据存储表, 此表只会有一个region
Phoenix是HBase的开源SQL皮肤。可以使用标准JDBC API代替HBase客户端API来创建表,插入数据和查询HBase数据。
在系统中向hbase中插入数据时,常常通过设置region的预分区来防止大数据量插入的热点问题,提高数据插入的效率,同时可以减少当数据猛增时由于Region split带来的资源消耗。大量的预分区数量会导致hbase客户端缓存大量的分区地址,导致内存的增长,某些系统中一个JVM进程中会开启几十个独立的hbase客户端对象,同时会查询多张Hbase表,这样JVM进程就会缓存 (预分区数 X 表数 X Hbase客户端数=条记录)。
HBase的下载与安装 (HBase是一种数据库:Hadoop数据库,它是一种NoSQL存储系统,专门设计用来快速随机读写大规模数据。本文介绍HBase的下载与安装的整个过程。) 一、HBase的下载 1.登录HBase官网http://hbase.apache.org/,可看到如图1所示的页面: 图1 登录HBase官网的页面 2.点击图1中的红色小框中的“here”,进入如图2所示的页面。 图2 下载链接 3.点击图2中的红色小框中的链接,进入如图3所示的下载页面。 图3 下载
HBase是一个开源的非关系型分布式数据库,设计初衷是为了解决大量结构化数据存储与处理的需求。
在CAP能力模型表现方面,hbase主要是面向CP的应用系统,针对数据写入可以满足强一致性需求,从客户端视角来看写入成功之后的数据是即时可见的。然而hbase的CP模型目前还存在很大的短板,比如当有服务节点出现宕机事件时,需要经历很长时间的MTTR过程,耗时主要体现在以下两个方面:
在hbase集群故障时,hbase client无法连接region server的时候,因为重试参数配置问题,程序并不会直接抛出异常,而是会一直重试,导致异常报警没有触发。此篇文章讲述client的重试机制及参数配置。
就职于网易杭州研究院后台技术中心数据库技术组,从事HBase开发、运维,对HBase相关技术有浓厚的兴趣。
Master是所有Region Server的管理者,其实现为HRegionServer,主要作用有:
一 基础架构详解 1 概念 讲调优之前,需要大家深入了解phoenix的架构,这样才能更好的调优。 Apache Phoenix在Hadoop中实现OLTP和运营分析,实现低延迟应用是通过结合下面两个优势: 具有完整ACID事务功能的标准SQL和JDBC API的强大功能 通过利用HBase作为后台存储,为NoSQL世界提供了late-bound, schema-on-read灵活的功能。 Apache Phoenix与其他Hadoop产品完全集成,如Spark,Hive,Pig,Flume和Map
Row Key 是用来检索记录的主键。想要访问 HBase Table 中的数据,只有以下三种方式:
HBase优化能够让我们对调优有一定的理解,当然企业并不是所有的优化全都用,优化还要根据业务具体实施。
使用filter需要guava jar包 The Guava project contains several of Google's core libraries that we rely on in our Java-based projects: collections, caching, primitives support, concurrency libraries, common annotations, string processing, I/O, and so forth. 否则出错:j
HBase作为列族数据库最经常被人诟病的特性包括:无法轻易建立“二级索引”,难以执行求和、计数、排序等操作。比如,在旧版本的(<0.92)Hbase中,统计数据表的总行数,需要使用Counter方法,执行一次MapReduce Job才能得到。虽然HBase在数据存储层中集成了MapReduce,能够有效用于数据表的分布式计算。然而在很多情况下,做一些简单的相加或者聚合计算的时候,如果直接将计算过程放置在server端,能够减少通讯开销,从而获得很好的性能提升。于是,HBase在0.92之后引入了协处理器(coprocessors),实现一些激动人心的新特性:能够轻易建立二次索引、复杂过滤器(谓词下推)以及访问控制等。
在 HBase 中,row key 可以是任意字符串,最大长度 64KB,实际应用中一般为 10~100bytes,存为 byte[]字节数组,一般设计成定长的。
HBase是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统。HBase设计目标是用来解决关系型数据库在处理海量数据时的局限性。
时间回到2011年,Hadoop作为新生事物,在阿里巴巴已经玩得风生水起,上千台规模的"云梯"是当时国内名声显赫的计算平台。 这一年,Hadoop的好兄弟HBase由毕玄大师带入淘宝,开启了它的阿里之旅。从最初的淘宝历史交易记录,到去年的支付宝消费记录存储在线历史存储统一;从蚂蚁安全风控的多年存储演进,到HBase、TT、Galaxy的大数据激情迭代;HBase在阿里经历过年轻的苦涩,释放过青春的活力,也付出过成长的代价。几代人的不懈努力下,五年陈的HBase开始表现出更成熟、更完善、更丰富的一面,成为公司内部被广泛使用的存储产品之一。 经过阿里集团内部的锤炼,集团将这个技术红利输送给广大阿里云客户。现已推出云数据库HBase产品,支持海量的PB级的大数据存储,适用于高吞吐的随机读写的场景。
读数据 HBase的表是按行拆分为一个个 region 块儿,这些块儿被放置在各个 regionserver 中 假设现在想在用户表中获取 row key 为 row0001 的用户信息 要想取得这条
HBASE的连接不像其他传统关系型数据库连接需要维护连接池。HBASE连接若使用错误则会导致随时间推移程序创建的TCP连接过多,导致HBASE连接失败。
client api ==> RPC ==> server IPC ==> RPC queue ==> RPC handler ==> write WAL ==> write memstore ==> flush to filesystem
如果数据吞吐量较大,且一次查询返回的数据量较大,则Rowkey 必须进行散列化处理,同时建表必须进行预分区处理。对于以get为主的查询场景,则将表进行hash预分区,均匀分布;如果以scan为主,则需要兼顾业务场景设计rowkey,在满足查询需求的前提下尽量对数据打散并进行负载均衡。
在使用 HBase 时,如果你的数据量达到了数十亿行或数百万列,此时能否在查询中返回大量数据将受制于网络的带宽,即便网络状况允许,但是客户端的计算处理也未必能够满足要求。在这种情况下,协处理器(Coprocessors)应运而生。它允许你将业务计算代码放入在 RegionServer 的协处理器中,将处理好的数据再返回给客户端,这可以极大地降低需要传输的数据量,从而获得性能上的提升。同时协处理器也允许用户扩展实现 HBase 目前所不具备的功能,如权限校验、二级索引、完整性约束等。
快的打车从2013年年底到2014年下半年,系统访问量迅速膨胀,很多复杂的问题要在短时间内解决,且不能影响线上业务,这是比较大的挑战,看下打车架构演变过程遇到的一些有代表性的问题和解决方案。
Hbase是一种NoSql模式的数据库,采用了列式存储。而采用了列存储天然具备以下优势:
在前面的文章里,介绍过 HBase 的入门操作知识,但对于正考虑将 HBase 用于生产系统的项目来说还是远远不够。
1.客户端与服务端通信会遇到哪些问题? 2.怎样基于Storm和HBase打造实时监控平台? 3.怎样对Web系统进行分布式改造? 快的打车从2013年年底到2014年下半年,系统访问量迅速膨胀,很多
HBase架构组件 从物理结构上讲,HBase由三种类型的服务器构成主从式架构。Region Servers为数据的读取和写入提供服务。当访问数据时,客户端直接和Region Servers通信。Region的分配,DDL (create, delete tables)操作有HBase Master进程处理。Zookeeper是HDFS的一部分,维护着一个活动的集群。 Hadoop DataNode 存储着Region Server所管理的数据。所有的HBase数据存储在HDFS的文件中。Region S
离线数据分析平台实战——090HBase shell客户端和Java Api介绍 HBase 命令介绍 HBase命令主要分为两大类, 第一类是指操作hbase表的相关的shell命令; 第二类是
公司的hbase集群早先是基于社区1.2.4版本进行搭建的,在时延表现方面起初并不十分理想,受GC尖刺的影响非常严重,针对P99响应时延也只能给业务提供不高于100毫秒的SLA承诺,因此在公司层面接入hbase的业务普遍还是面向近线或者离线场景,而针对时延响应要求比较高的在线业务则没有办法提供能力支持。
人资绩效系统数据预处理平台,负责接收所有上游业务量数据。具有数据量大、非结构化数据、更新单个业务量数据,查询性能要求高等特性。通常技术上可以选择OSS、MySql数据库、ES等存储方案。其中OSS云存储方案,查询性能与更新单个业务量数据上无法满足。MySql数据库如果每对接一种业务量创建一个表的方式,对于更新查询等方面复杂度较高,不利于系统扩展。而ES存储量与查询量都可以满足,但更新单个字段不够友好,且ES成本较高。
既然是Write-Ahead-Log,为何先写内存再写WAL? 先写内存的原因:HBase提供了一个MVCC机制,来保障些数据阶段的数据可见性。先写MemStore再写WAL,是为了一些特殊场景下,内存中的数据能够更及时的返回。如果先写WAL失败的话,MemStore助攻的数据会被回滚。
Rowkey 是行的主键,它是以字典顺序排序的。所以 Rowkey 的设计是至关重要的, 关系到你应用层的查询效率。
内容来源:2018 年 09 月 15 日,平安科技数据平台部大数据高级工程师邓杰在“中国HBase技术社区第五届MeetUp ——HBase应用与发展”进行《HBase应用与实践》的演讲分享。IT 大咖说(微信id:itdakashuo)作为独家视频合作方,经主办方和讲者审阅授权发布。
领取专属 10元无门槛券
手把手带您无忧上云