Hive 是基于 Hadoop 的一个数据仓库工具,可以将结构化的数据文件映射为一张表,并
3.全量导入(将数据从mysql导入到hive,hive表不存在,导入时自动创建hive表)
在做数据导出之前,我们看一下已经完成的操作:数据分析阶段将指标统计完成,也将统计完成的指标放到Hive数据表中,并且指标数据存储到HDFS分布式文件存储系统。
在数据处理和数据仓库建设中,常常会用到Hive进行数据存储和查询。然而,有时候我们需要将Hive中的表结构迁移到其他关系型数据库,比如MySQL。本文将介绍如何将Hive中的建表语句转换为MySQL中的建表语句,方便数据迁移和数据同步。
注意:各主机中的操作系统版本需保持一致。安装过程中都在hadoop用户下,本教材中密码统一采用:password(注意大小写)
有些业务场景需要Python直接读写Hive集群,也需要Python对MySQL进行操作。pyspark就是为了方便python读取Hive集群数据,当然环境搭建也免不了数仓的帮忙,常见的如开发企业内部的Jupyter Lab。
(3)修改 apache-hive-1.2.1-bin.tar.gz 的名称为 hive
Hive:由Facebook开源用于解决海量结构化日志的数据统计(分析框架)。 Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张表,并提供类SQL查询功能。 本质是:将HQL转化成MapReduce程序。
将 mysql 数据库中的 hive 数据库中的 ROLES 表数据导入到 HDFS 中的 /tmp/root/111 目录下。执行代码如下:
Hive是Hadoop生态中的一个重要组成部分,主要用于数据仓库。前面的文章中我们已经搭建好了Hadoop的群集,下面我们在这个群集上再搭建Hive的群集。
数据采集时如果使用datax的话,必须先手工建好表之后才能进行数据采集;使用sqoop的话虽然可以默认建表,但是每次还要手工配置命令。表数量不多的话还好,如果多库多表需要批量采集的话工作量会很大,因此需要一个批量生成建表语句的功能来节省人力。
将Mysql安装包上传到服务器上,然后解压压缩包,使用命令:unzip mysql-libs.zip
Hive 是建立在 Hadoop 基础上的数据仓库基础构架。它提供了一系列的工具,可以用来进行数据提取转化加载(ETL),这是一种可以存储、查询和分析存储在 Hadoop 中的大规模数据的机制。Hive 定义了简单的类 SQL 查询语言,称为 QL ,它允许熟悉 SQL 的用户查询数据。同时,这个语言也允许熟悉 MapReduce 开发者的开发自定义的 mapper 和 reducer 来处理内建的 mapper 和 reducer 无法完成的复杂的分析工作。
在数据仓库建模中,未经任何加工处理的原始业务层数据,我们称之为ODS(Operational Data Store)数据。在互联网企业中,常见的ODS数据有业务日志数据(Log)和业务DB数据(DB)两类。对于业务DB数据来说,从MySQL等关系型数据库的业务数据进行采集,然后导入到Hive中,是进行数据仓库生产的重要环节。
基于传统关系型数据库的稳定性,还是有很多企业将数据存储在关系型数据库中;早期由于工具的缺乏,Hadoop与传统数据库之间的数据传输非常困难。基于前两个方面的考虑,需要一个在传统关系型数据库和Hadoop之间进行数据传输的项目,Sqoop应运而生。
Sqoop可以在HDFS/Hive和关系型数据库之间进行数据的导入导出,其中主要使用了import和export这两个工具。这两个工具非常强大,提供了很多选项帮助我们完成数据的迁移和同步。比如,下面两个潜在的需求:
有赞大数据技术应用的早期,我们使用 Sqoop 作为数据同步工具,满足了 MySQL 与 Hive 之间数据同步的日常开发需求。
本文节选自《Netkiller Database 手札》 CentOS 7.3 + Server JRE 1.8 + Hadoop-2.8.0 + Hive-2.1.1 第 63 章 Apache
这里由于小编的这里在安装hive时,由于出现了启动hive时出现了和hadoop的版本不一致的原因,并且始终没有解决,所以就改变策略使用cdh版本的hadoop和hive.因为cdh版本的比较系统,兼容性好。因此要重新安装了。
大家好,我是一哥,昨天看到了过往记忆大佬发了一篇文章,才发现Sqoop这个项目最近不咋好,心里很不是滋味,这个帮助过很多开发者的项目,竟然从Apache顶级项目中“下架”了,今天还是想给大家分享介绍一些这个很棒的项目,致敬!
以上案例需要用到的处理器有:“CaptureChangeMySQL”、“RouteOnAttribute”、“EvaluateJsonPath”、“ReplaceText”、“PutHiveQL”。
本文主要从Binlog实时采集和离线处理Binlog还原业务数据两个方面,来介绍如何实现DB数据准确、高效地进入数仓。
在经过几天MapReduce的学习之后,我们总算是来到了Hive阶段。本篇博客小菌将为大家带来Hadoop组件之——Hive的介绍! 首先在开始之前,再让我们通过一张熟悉的图片来回顾一下Hadoop生态系统的组成部分!
基于 Hadoop 的一个数据仓库工具: hive本身不提供数据存储功能,使用HDFS做数据存储, hive也不分布式计算框架,hive的核心工作就是把sql语句翻译成MR程序 hive也不提供资源调度系统,也是默认由Hadoop当中YARN集群来调度 可以将结构化的数据映射为一张数据库表,并提供 HQL(Hive SQL)查询功能
Hive可以管理HDFS中的数据,可以通过SQL语句可以实现与MapReduce类似的同能,因为Hive底层的实现就是通过调度MapReduce来实现的,只是进行了包装,对用户不可见。 Hive对HDFS的支持只是在HDFS中创建了几层目录,正真的数据存在在MySql中,MYSQL中保存了Hive的表定义,用户不必关系MySQL中的定义,该层对用户不可见。Hive中的库在HDFS中对应一层目录,表在HDFS中亦对应一层目录,如果在对应的表目录下放置与表定义相匹配的数据,即可通过Hive实现对数据的可视化及查询等功能 综上所述,Hive实现了对HDFS的管理,通过MySQL实现了对HDFS数据的维度管理 Hive基本功能及概念 database table 外部表,内部表,分区表 Hive安装 1. MySql的安装(密码修改,远程用户登陆权限修改) 2. Hive安装获取,修改配置文件(HADOOP_HOME的修改,MySQL的修改) 3. 启动HDFS和YARN(MapReduce),启动Hive Hive基本语法: 1. 创建库:create database dbname 2. 创建表:create table tbname Hive操作: 1. Hive 命令行交互式 2. 运行HiveServer2服务,客户端 beeline 访问交互式运行 3. Beeline 脚本化运行 3.1 直接在 命令行模式下 输入脚本命令执行(比较繁琐,容易出错,不好归档) 3.2 单独保存SQL 命令到 文件,如etl.sql ,然后通过Beeline命令执行脚本 数据导入: 1. 本地数据导入到 Hive表 load data local inpath "" into table .. 2. HDFS导入数据到 Hive表 load data inpath "" into table .. 3. 直接在Hive表目录创建数据 Hive表类型: 1. 内部表: create table 表数据在表目录下,对表的删除会导致表目录下的数据丢失,需要定义表数据的分隔符。 2. 外部表: create external table 表目录下挂载表数据,表数据存储在其他HDFS目录上,需要定义表数据的分隔符。 3. 分区表:与创建内部表相同,需要定义分区字段及表数据的分隔符。在导入数据时需要分区字段,然后会在表目录下会按照分区字段自动生成分区表,同样也是按照目录来管理,每个分区都是单独目录,目录下挂载数据文件。 4. CTAS建表 HQL 1. 单行操作:array,contain等 2. 聚合操作:(max,count,sum)等 3. 内连接,外连接(左外,右外,全外) 4. 分组聚合 groupby 5. 查询 : 基本查询,条件查询,关联查询 6. 子查询: 当前数据源来源于 另个数据执行的结果,即当前 table 为临时数据结果 7. 内置函数: 转换, 字符串, 函数 转换:字符与整形,字符与时间, 字符串:切割,合并, 函数:contain,max/min,sum, 8. 复合类型 map(key,value)指定字符分隔符与KV分隔符 array(value)指定字符分隔符 struct(name,value) 指定字符分割与nv分隔符 9. 窗口分析函数 10. Hive对Json的支持
在数据仓库建模中,未经任何加工处理的原始业务层数据,我们称之为ODS(Operational Data Store)数据。在互联网企业中,常见的ODS数据有业务日志数据(Log)和业务DB数据(DB)两类。对于业务DB数据来说,从MySQL等关系型数据库的业务数据进行采集,然后导入到Hive中,是进行数据仓库生产的重要环节。
注意: 在sqoop-1.4.6以前,从MySQL中导出数据到hive表中,不能指定文件格式为parquet,只能先导入到HDFS,在从HDFS上load parquet file
这里我们假定一个场景,你需要迁移CDH5.12到CDH6.2,CDH5.12和CDH6.2分别是两个不同的集群,我们的工作主要是HDFS数据和各种元数据从CDH5.12迁移到CDH6.2,本文不讨论HDFS数据的迁移也不讨论其他元数据的迁移比如CM或Sentry,而只关注Hive元数据的迁移。这里的问题主要是CDH5.12的Hive为1.1,而CDH6.2中Hive已经是2.1.1,Hive的大版本更新导致保存在MySQL的schema结构都完全发生了变化,所以我们在将CDH5.12的MySQL数据导入到CDH6.2的MySQL后,需要更新Hive元数据的schema。首先Fayson会搭建2个集群包括CDH5.12和CDH6.2,为了真实,我们在接下来的模拟过程中,创建的Hive表包含分区,视图和UDF,好方便验证是否迁移到CDH6.2都能正常运行。具体如何迁移Fayson会在接下来的文章进行详细描述。
Hive是什么?其体系结构简介* Hive的安装与管理* HiveQL数据类型,表以及表的操作* HiveQL查询数据*** Hive的Java客户端** Hive的自定义函数UDF* 1:什
本篇博客,博主为大家带来的是大数据实战【千亿级数仓】阶段二的内容。
sqoop是apache旗下,用于关系型数据库和hadoop之间传输数据的工具,sqoop可以用在离线分析中,将保存在mysql的业务数据传输到hive数仓,数仓分析完得到结果,再通过sqoop传输到mysql,最后通过web+echart来进行图表展示,更加直观的展示数据指标。
Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的sql查询功能,可以将sql语句转换为MapReduce任务进行运行。
sqoop是apache旗下一款“Hadoop和关系数据库服务器之间传送数据”的工具。
纪成,携程数据开发总监,负责金融数据基础组件及平台开发、数仓建设与治理相关的工作。对大数据领域开源技术框架有浓厚兴趣。
tar -zxvf apache-hive-1.2.1-bin.tar.gz -C /itcast/
1. Hadoop、Hive、MySQL安装(略) 2. 下载sqoop http://www.apache.org/dyn/closer.lua/sqoop/1.4.6 3. 解压 tar -zxvf sqoop-1.4.6.bin__hadoop-2.0.4-alpha.tar.gz 4. 建立软连接 ln -s sqoop-1.4.6.bin__hadoop-2.0.4-alpha sqoop 5. 加执行文件路径 export PATH=$PATH:/
Hive是基于Hadoop的一个数据仓库工具,用来进行数据提取、转化、加载,是一个可以对Hadoop中的大规模存储的数据进行查询和分析存储的组件,Hive数据仓库工具能将结构化的数据文件映射为一张数据库表,并提供SQL查询功能,能将SQL语句转变成MapReduce任务来执行,使用成本低,可以通过类似SQL语句实现快速MapReduce统计,使MapReduce变得更加简单,而不必开发专门的MapReduce应用程序。hive十分适合对数据仓库进行统计分析。
默认情况下,Hive的元数据是存储到Derby中的,这是Apache的一个纯Java编写的小巧数据库,类似于Sqlite。但是这样就会出现一个情况:Derby是单例的,当你在一个终端打开了hive时,在另外一个终端打开hive命令行会报错。所以使用MySQL来存储元数据能够解决这个问题,并且也更方便迁移和备份。
Hadoop正成为企业用于大数据分析的最热门选择,但想将你的数据移植过去并不容易。Apache Sqoop正在加紧帮助客户将重要数据从数据库移到Hadoop。随着Hadoop和关系型数据库之间的数据移动渐渐变成一个标准的流程,云管理员们能够利用Sqoop的并行批量数据加载能力来简化这一流程,降低编写自定义数据加载脚本的需求。
2.停止Hive服务,在配置中搜索“database”,修改数据库配置到MySQL库
在hive的安装目录下,进入conf目录,创建一个hive-site.xml文件 根据官方文档配置参数,拷贝数据到hive-site.xml文件中 https://cwiki.apache.org/
2.注释问题2.1 MySQL中的注释2.2 Hive中的注释3.乱码问题3.1 修改表字段注解和表注解3.2 修改分区字段注解3.3 修改索引注解3.4 修改metastore的连接URL4.数据库基本操作4.1 创建带属性的库4.2 显示数据库详情:4.3 查看正在使用哪个库4.4 查看数据库的详情语句5.删除数据库5.1 删除库原则5.2 删除不含表的数据库5.3 删除含表数据库6.切换库及创建表6.1 切换库6.2 创建表7.表详情及表操作7.1 表详情7.2 表操作8.分区8.1 查看分区8.2 添加分区8.3 修改分区8.4 删除分区
Sqoop是Apache开源项目,用于在Hadoop和关系型数据库之间高效传输大量数据,本文将与您一起实践以下内容:
在网易集团内部有大大小小几百套 hive 集群,为了满足网易猛犸大数据平台的元数据统一管理的需求,我们需要将多个分别独立的 hive 集群的元数据信息进行合并,但是不需要移动 HDFS 中的数据文件,比如可以将 hive2、hive3、hive4 的元数据全部合并到 hive1 的元数据 Mysql 中,然后就可以在 hive1 中处理 hive2、hive3、hive4 中的数据。
sqoop,即SQL To Hadop,目的是完成关系型数据库导入导出到Hadoop
在 Mysql 修改Hive元数据表注释和字段注释的编码为 utf-8 在Hive的元数据库(MySQL)中运行: 修改表字段注解和表注解
领取专属 10元无门槛券
手把手带您无忧上云