sqoop job --meta-connect jdbc:hsqldb:hsql://ip:port/sqoop --list
1. Hadoop、Hive、MySQL安装(略) 2. 下载sqoop http://www.apache.org/dyn/closer.lua/sqoop/1.4.6 3. 解压 tar -zxvf sqoop-1.4.6.bin__hadoop-2.0.4-alpha.tar.gz 4. 建立软连接 ln -s sqoop-1.4.6.bin__hadoop-2.0.4-alpha sqoop 5. 加执行文件路径 export PATH=$PATH:/
Hive支持两种方式的数据导入 使用load语句导入数据 使用sqoop导入关系型数据库中的数据 使用load语句导入数据 导入本地的数据文件 load data local inpath '/home/centos/a.txt' into table tt; 注意:Hive默认分隔符是: tab键。所以需要在建表的时候,指定分隔符。 导入HDFS上的数据 load data inpath '/home/centos/a.txt' into table tt; 使用sqoop导入关系型数据库中的数据
sqoop,各位看官基本上都了解或者听说过,小二就不进行废话了。另外基于国内大部分用的为CDH,小二就想说一点:CDH中的sqoop2其实是apace版的sqoop1,聪明的看官不要被表面所迷惑了.
3.全量导入(将数据从mysql导入到hive,hive表不存在,导入时自动创建hive表)
注意: 在sqoop-1.4.6以前,从MySQL中导出数据到hive表中,不能指定文件格式为parquet,只能先导入到HDFS,在从HDFS上load parquet file
Sqoop 的lib中缺少Hive 的jar包,从Hive 中找的缺少的jar包到Sqoop中即可
使用--hive-import就可以将数据导入到hive中,但是下面这个命令执行后会报错,报错信息如下:
离线数据分析平台实战——160Sqoop介绍 Sqoop介绍 Apache Sqoop(SQL-to-Hadoop) 是一款开源的工具,主要用于在Hadoop(Hive)与传统的数据库(mysql、oracle...)间进行数据的传递,可以将一个关系型数据库中的数据导进到Hadoop的HDFS中,也可以将HDFS的数据导进到关系型数据库中。 一般情况下,是将数据分析的结果导出到关系型数据库中,供其他部门使用。 Sqoop成立于2009年,刚开始是作为hadoop的一个模块而存在的,不过后来为了更好的进行
Sqoop(发音:skup)是一款开源的工具,主要用于在Hadoop(Hive)与传统的数据库(mysql、postgresql...)间进行数据的传递,可以将一个关系型数据库(例如 : MySQL ,Oracle ,Postgres等)中的数据导进到Hadoop的HDFS中,也可以将HDFS的数据导进到关系型数据库中。
#1.在Oracle上建立要处理的表 create table SOURCE_TABLE_NAME as SELECT t.*,rownum as row_num FROM SOURCE_TABLE_NAME_O t ; alter table SOURCE_TABLE_NAME add constraint SOURCE_TABLE_NAME_P primary key (ROW_NUM); #2.在Oracle上建立处理结果表 DEST_TABLE_NAME #3.oracle导入到hadoop
这里给大家列出来了一部分Sqoop操作时的常用参数,以供参考,需要深入学习的可以参看对应类的源代码。
关系行数据库与非关系型数据库之间的数据同步 一、在不使用sqoop的情况下 Mysql–>hive 1.利用naivacat(工具)将数据库中的表导出(导出的时候要主要制表符/t) 2.利用WinSCP(工具)上传到linux指定的文件夹下 3.先在hive建表 create table 表名(idfa string) row format delimited fields terminated by ‘\t'” 4.hive -e “load data local inpath ‘t1.txt’ into table t1” (假设表里面有数据,须要truncate table hive表名。在运行4) truncate table t1;( 仅仅删除表数据) 或者hive -e “load data local inpath ‘t1.txt’ overwrite into table t1”; hive–>Mysql 1.hive -e “sql语句;>>name.txt” 导出在home/dev 2.然后在利用WinSCP(工具)下载到本地 二、在使用sqoop的情况下 1.解压sqoop,配置环境变量: 在/etc/profile中加入:(没有root权限是不能改动的,所以仅仅能在sqoop/bin路径下启动) export SQOOP_HOME/bin:PATH 配置完毕后要运行 source etc/profile 2. 解压mysql,将mysql-connector-java-5.1.24-bin.jar放到
要想实现增量导入,完全可以不使用Sqoop的原生增量特性,仅使用shell脚本生成一个以当前时间为基准的固定时间范围,然后拼接Sqoop命令语句即可。
目前提供两种方法解决数据库中的字段值为NULl导入到HIVE中后变成空字符串的方法,使用以下方法可以保障在mysql中存储的是NULL,导入到HIVE表后也是NULL
今天开始讲解Sqoo的用法搭建和使用。Sqoop其实功能非常简单。主要用于在Hadoop(Hive)与传统的数据库(mysql、postgresql...)间进行数据的传递,可以将一个关系型数据库(例如 : MySQL ,Oracle ,Postgres等)中的数据导进到Hadoop的HDFS中,也可以将HDFS的数据导进到关系型数据库中。
外部数据需要使用Flume进行数据采集操作,将采集到的数据映射到Hive中,首先创建Hive的表
Sqoop 数据迁移 Sqoop 底层还是运行在MapReduce上,通过Yarn进行调度的,只是Sqoop在做数据迁移过程中,只用到了MapTask,没有用到ReduceTask。 Sqoop 是一个数据迁移工具,可以理解为客户端程序,提供HDFS/Hive/HBase 到 RDS(Oracle,Postgrel,MySql等) 数据的导入导出 Sqoop 需要配置到HDFS端,Sqoop从HDFS/Hive/HBase 导出到 RDB时,需要预先 对RDB进行表结构定义,从RDB导出到Hive/HDFS/HBase时不需要对HBase进行表结构定义,对Hive的定义需要指定分隔符等参数. Sqoop需要指定 Hadopp-Home.xml ,MapReduce-HOME.xml,JAVA-HOME 等系统环境变量 类型类型包含 Export,Import Sqoop 在做数据迁移之前,最好测试下 数据连接是否正常,如果运行不正常,方便进行问题定位。 Sqoop 需要参数配置文件 ***.xml, 如果从 RDB 导出数据到 HDFS 指定 RDB驱动,路径,用户名,密码,库及表等信息 如果为 HDFS 需要执行 HDFS 路径,与Hive数据类似 如果为HBase,则需要指定库信息,路径等 如果从 HDFS/Hive/HBase 到RDB时, 指定HDFS,需要指定路径,分割幅等信息,Hive类似 RDB需要指定 驱动名,URL,User,Pwd,库及表
https://www.cnblogs.com/xiaoliu66007/p/9633505.html
在做数据导出之前,我们看一下已经完成的操作:数据分析阶段将指标统计完成,也将统计完成的指标放到Hive数据表中,并且指标数据存储到HDFS分布式文件存储系统。
使用Sqoop抽取MySQL数据到Hive表时,抽取语句正常执行但数据没有写入Hive的表中,执行的Sqoop抽数脚本如下:
Apache Sqoop(TM)是一种旨在有效地在Apache Hadoop和诸如关系数据库等结构化数据存储之间传输大量数据的工具。
之前关于用户画像项目部分的讲解大多停留在理论层面,本篇我们正式开始对该项目中所使用到的业务数据进行调研和ETL处理。
sqoop,即SQL To Hadop,目的是完成关系型数据库导入导出到Hadoop
Sqoop 是一款开源的工具,主要用于在 Hadoop(Hive) 与传统的数据库 (mysql,postgresql,...) 间进行数据的高校传递,可以将一个关系型数据库(例如:MySQL,Oracle,Postgres等)中的数据导入到 Hadoop 的 HDFS 中,也可以将 HDFS 的数据导进到关系型数据库中。 Sqoop 项目开始于 2009 年,最早是作为 Hadoop 的一个第三方模块存在,后来为了让使用者能够快速部署,也为了让开发人员能够更快速的迭代开发,Sqoop 独立成为一个 Apache 顶级项目。 Sqoop2 的最新版本是 1.99.7。请注意,2 与 1 不兼容,且特征不完整,它并不打算用于生产部署。
前面介绍了sqoop1.4.6的 如何将mysql数据导入Hadoop之Sqoop安装,下面就介绍两者间的数据互通的简单使用命令。 显示mysql数据库的信息,一般sqoop安装测试用 sqoop list-databases --connect jdbc:mysql://192.168.2.101:3306/ --username root --password root 显示数据库里所有表: sqoop list-tables --connectjdbc:mysql://192.168.2.101:
Sqoop是一个用来将Hadoop(Hive、HBase)和关系型数据库中的数据相互转移的工具,可以将一个关系型数据库(例如:MySQL ,Oracle ,Postgres等)中的数据导入到Hadoop的HDFS中,也可以将HDFS的数据导入到关系型数据库中。
在前面Fayson介绍了《Cloudera Navigator介绍与安装》,本篇文章主要介绍Navigator的四大核心功能,元数据搜索、数据溯源、审计以及数据生命周期管理功能。当然Navigator还一个重要的功能就是进行数据加密,因为涉及内容较多,也稍微复杂一些,所以本文这里先不介绍,Fayson会在后面的文章单独进行说明。
基于传统关系型数据库的稳定性,还是有很多企业将数据存储在关系型数据库中;早期由于工具的缺乏,Hadoop与传统数据库之间的数据传输非常困难。基于前两个方面的考虑,需要一个在传统关系型数据库和Hadoop之间进行数据传输的项目,Sqoop应运而生。
三、使用Oozie定期自动执行ETL 1. Oozie简介 (1)Oozie是什么 Oozie是一个管理Hadoop作业、可伸缩、可扩展、可靠的工作流调度系统,其工作流作业是由一系列动作构成的有向无环图(DAGs),协调器作业是按时间频率周期性触发的Oozie工作流作业。Oozie支持的作业类型有Java map-reduce、Streaming map-reduce、Pig、 Hive、Sqoop和Distcp,及其Java程序和shell脚本等特定的系统作业。 第一版Oozie是一个基于工作流引擎的服务器,通过执行Hadoop Map/Reduce和Pig作业的动作运行工作流作业。第二版Oozie是一个基于协调器引擎的服务器,按时间和数据触发工作流执行。它可以基于时间(如每小时执行一次)或数据可用性(如等待输入数据完成后再执行)连续运行工作流。第三版Oozie是一个基于Bundle引擎的服务器。它提供更高级别的抽象,批量处理一系列协调器应用。用户可以在bundle级别启动、停止、挂起、继续、重做协调器作业,这样可以更好地简化操作控制。 (2)为什么需要Oozie
Sqoop是一款开源的工具,主要用于在Hadoop(Hive)与传统的数据库(mysql、postgresql...)间进行数据的传递,可以将一个关系型数据库(例如 : MySQL ,Oracle ,Postgres等)中的数据导进到Hadoop的HDFS中,也可以将HDFS的数据导进到关系型数据库中。
sqoop简介 1,sqoop:sql-to-hadoop, sqoop是连接关系型数据库和hadoop的桥梁: (1),把关系型数据库的数据导入到hadoop与其相关的系统(hbase和hive); (2),把数据从hadoop导出到关系型数据库里。 sqoop是利用mapreudude加快数据的传输速度,批处理的方式进行数据传输。 2,sqoop1&sqoop2 两个版本完全不兼容。版本的划分方式是apache:1.4.x,1.99.x。 sqoop2相对于sqoop1有很大改进:首先引入了
将 mysql 数据库中的 hive 数据库中的 ROLES 表数据导入到 HDFS 中的 /tmp/root/111 目录下。执行代码如下:
业务场景:是在oracle 数据库和 hive 数据库中 ,有多个相同结构的表,要求数据从2个库定时双向同步。
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/wzy0623/article/details/51804557
导语:本身TBDS平台不提供sqoop组件,若用户想在TBDS平台上使用sqoop抽取外部数据导入至TBDS平台,需要单独部署sqoop组件。
在Sqoop中,“导入”概念指:从非大数据集群(RDBMS)向大数据集群(HDFS,HIVE,HBASE)中传输数据,叫做:导入,即使用import关键字。
Sqoop是一个用来将hadoop和关系型数据库中的数据相互转移的工具,可以将一个关系型数据库(例如:mysql,oracle,等)中的数据导入到hadoop的HDFS中,也可以将HDFS的数据导入到关系型数据库中。
Sqoop 工具是Hadoop环境下连接关系数据库,和hadoop存储系统的桥梁,支持多种关系数据源和hive,hdfs,hbase的相互导入。一般情况下,关系数据表存在于线上环境的备份环境,需要每天进行数据导入,根据每天的数据量而言,sqoop可以全表导入,对于每天产生的数据量不是很大的情形可以全表导入,但是sqoop也提供了增量数据导入的机制。
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/wzy0623/article/details/51837457
随着Hadoop集群数据量的增长,集群中也同时会存在大量的小文件,即文件Size比HDFS的Block Size(默认128MB)小的多的文件。Hadoop集群中存在大量的小文件对集群造成的影响如下:
十一、多重星型模式 从“进阶技术”开始,已经通过增加列和表扩展了数据仓库,在进阶技术(五) “快照”里增加了第二个事实表,month_end_sales_order_fact表。这之后数据仓库模式就有了两个事实表(第一个是在开始建立数据仓库时创建的sales_order_fact表)。有了这两个事实表的数据仓库就是一个标准的双星型模式。 本节将在现有的维度数据仓库上再增加一个新的星型结构。与现有的与销售关联的星型结构不同,新的星型结构关注的是产品业务领域。新的星型结构有一个事实表和一个维度表,用于存储数据仓库中的产品数据。 1. 一个新的星型模式 下图显示了扩展后的数据仓库模式。
本篇博客,博主为大家带来的是大数据实战【千亿级数仓】阶段二的内容。
sqoop是apache旗下,用于关系型数据库和hadoop之间传输数据的工具,sqoop可以用在离线分析中,将保存在mysql的业务数据传输到hive数仓,数仓分析完得到结果,再通过sqoop传输到mysql,最后通过web+echart来进行图表展示,更加直观的展示数据指标。
import-all-tables工具将一组表从RDBMS导入到HDFS。来自每个表的数据存储在HDFS的单独目录中。
使用Sqoop抽取MySQL数据到Hive表时,抽取语句正常执行在数据Load到Hive表时报“Operation category READ is not supported in state standby”,执行的Sqoop抽数脚本如下:
二、按需装载 前面已经做了“初始装载”和“定期装载”。还有一种需要熟悉的装载类型,按需装载。所谓“按需装载”指的是,在正常调度之外,当源数据有效或者数据仓库需要时进行装载。例如,促销销售源数据只有在促销期内有效,而在其它时间是无效的,而对促销期数据就要进行按需装载。 在“建立数据仓库示例模型”中讨论的日期维度数据生成可以看做是一种按需装载。数据仓库预先装载了日期,当日期用完时,需要再次运行预装载。 本节的主题是按需装载,首先修改数据库模式,然后在DW数据库上执行按需装载,使用促销期场景进行说明。定期装载不适合促销期场景,因为促销期数据并不是按调度定期装载。下面是需要装载的促销期内容,存储在source.promo_schedule表中。
通过sqoop抽取Mysql表数据到hive表,发现hive表所有列显示为null
在使用Sqoop命令进行数据抽取时,执行的抽数脚本会在/tmp/sqoop-${user}/compile目录下产生临时的编译文件,脚本执行成功后这些生成的临时文件并不会自动的清除。该问题是官网已知的一个JIRA,具体可信息如下链接:
领取专属 10元无门槛券
手把手带您无忧上云