首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    sqoop的安装和使用[通俗易懂]

    关系行数据库与非关系型数据库之间的数据同步 一、在不使用sqoop的情况下 Mysql–>hive 1.利用naivacat(工具)将数据库中的表导出(导出的时候要主要制表符/t) 2.利用WinSCP(工具)上传到linux指定的文件夹下 3.先在hive建表 create table 表名(idfa string) row format delimited fields terminated by ‘\t'” 4.hive -e “load data local inpath ‘t1.txt’ into table t1” (假设表里面有数据,须要truncate table hive表名。在运行4) truncate table t1;( 仅仅删除表数据) 或者hive -e “load data local inpath ‘t1.txt’ overwrite into table t1”; hive–>Mysql 1.hive -e “sql语句;>>name.txt” 导出在home/dev 2.然后在利用WinSCP(工具)下载到本地 二、在使用sqoop的情况下 1.解压sqoop,配置环境变量: 在/etc/profile中加入:(没有root权限是不能改动的,所以仅仅能在sqoop/bin路径下启动) export SQOOP_HOME/bin:PATH 配置完毕后要运行 source etc/profile 2. 解压mysql,将mysql-connector-java-5.1.24-bin.jar放到

    02

    Sqoop 整体介绍

    Sqoop 数据迁移         Sqoop 底层还是运行在MapReduce上,通过Yarn进行调度的,只是Sqoop在做数据迁移过程中,只用到了MapTask,没有用到ReduceTask。         Sqoop 是一个数据迁移工具,可以理解为客户端程序,提供HDFS/Hive/HBase 到 RDS(Oracle,Postgrel,MySql等) 数据的导入导出         Sqoop 需要配置到HDFS端,Sqoop从HDFS/Hive/HBase 导出到 RDB时,需要预先 对RDB进行表结构定义,从RDB导出到Hive/HDFS/HBase时不需要对HBase进行表结构定义,对Hive的定义需要指定分隔符等参数.         Sqoop需要指定 Hadopp-Home.xml ,MapReduce-HOME.xml,JAVA-HOME 等系统环境变量          类型类型包含 Export,Import         Sqoop 在做数据迁移之前,最好测试下 数据连接是否正常,如果运行不正常,方便进行问题定位。         Sqoop 需要参数配置文件 ***.xml,             如果从 RDB  导出数据到 HDFS                 指定 RDB驱动,路径,用户名,密码,库及表等信息                 如果为 HDFS 需要执行 HDFS 路径,与Hive数据类似                 如果为HBase,则需要指定库信息,路径等             如果从 HDFS/Hive/HBase 到RDB时,                 指定HDFS,需要指定路径,分割幅等信息,Hive类似                 RDB需要指定 驱动名,URL,User,Pwd,库及表

    01

    大数据技术之_12_Sqoop学习_Sqoop 简介+Sqoop 原理+Sqoop 安装+Sqoop 的简单使用案例+Sqoop 一些常用命令及参数

    Sqoop 是一款开源的工具,主要用于在 Hadoop(Hive) 与传统的数据库 (mysql,postgresql,...) 间进行数据的高校传递,可以将一个关系型数据库(例如:MySQL,Oracle,Postgres等)中的数据导入到 Hadoop 的 HDFS 中,也可以将 HDFS 的数据导进到关系型数据库中。   Sqoop 项目开始于 2009 年,最早是作为 Hadoop 的一个第三方模块存在,后来为了让使用者能够快速部署,也为了让开发人员能够更快速的迭代开发,Sqoop 独立成为一个 Apache 顶级项目。   Sqoop2 的最新版本是 1.99.7。请注意,2 与 1 不兼容,且特征不完整,它并不打算用于生产部署。

    03

    基于Hadoop生态圈的数据仓库实践 —— ETL(三)

    三、使用Oozie定期自动执行ETL 1. Oozie简介 (1)Oozie是什么 Oozie是一个管理Hadoop作业、可伸缩、可扩展、可靠的工作流调度系统,其工作流作业是由一系列动作构成的有向无环图(DAGs),协调器作业是按时间频率周期性触发的Oozie工作流作业。Oozie支持的作业类型有Java map-reduce、Streaming map-reduce、Pig、 Hive、Sqoop和Distcp,及其Java程序和shell脚本等特定的系统作业。 第一版Oozie是一个基于工作流引擎的服务器,通过执行Hadoop Map/Reduce和Pig作业的动作运行工作流作业。第二版Oozie是一个基于协调器引擎的服务器,按时间和数据触发工作流执行。它可以基于时间(如每小时执行一次)或数据可用性(如等待输入数据完成后再执行)连续运行工作流。第三版Oozie是一个基于Bundle引擎的服务器。它提供更高级别的抽象,批量处理一系列协调器应用。用户可以在bundle级别启动、停止、挂起、继续、重做协调器作业,这样可以更好地简化操作控制。 (2)为什么需要Oozie

    02

    基于Hadoop生态圈的数据仓库实践 —— 进阶技术(十一)

    十一、多重星型模式 从“进阶技术”开始,已经通过增加列和表扩展了数据仓库,在进阶技术(五) “快照”里增加了第二个事实表,month_end_sales_order_fact表。这之后数据仓库模式就有了两个事实表(第一个是在开始建立数据仓库时创建的sales_order_fact表)。有了这两个事实表的数据仓库就是一个标准的双星型模式。 本节将在现有的维度数据仓库上再增加一个新的星型结构。与现有的与销售关联的星型结构不同,新的星型结构关注的是产品业务领域。新的星型结构有一个事实表和一个维度表,用于存储数据仓库中的产品数据。 1. 一个新的星型模式 下图显示了扩展后的数据仓库模式。

    01

    基于Hadoop生态圈的数据仓库实践 —— 进阶技术(二)

    二、按需装载 前面已经做了“初始装载”和“定期装载”。还有一种需要熟悉的装载类型,按需装载。所谓“按需装载”指的是,在正常调度之外,当源数据有效或者数据仓库需要时进行装载。例如,促销销售源数据只有在促销期内有效,而在其它时间是无效的,而对促销期数据就要进行按需装载。 在“建立数据仓库示例模型”中讨论的日期维度数据生成可以看做是一种按需装载。数据仓库预先装载了日期,当日期用完时,需要再次运行预装载。 本节的主题是按需装载,首先修改数据库模式,然后在DW数据库上执行按需装载,使用促销期场景进行说明。定期装载不适合促销期场景,因为促销期数据并不是按调度定期装载。下面是需要装载的促销期内容,存储在source.promo_schedule表中。

    01

    扫码

    添加站长 进交流群

    领取专属 10元无门槛券

    手把手带您无忧上云

    扫码加入开发者社群

    相关资讯

    热门标签

    活动推荐

      运营活动

      活动名称
      广告关闭
      领券