(点击上方公众号,可快速关注) 来源:伯乐在线 - 刘立华 LingPipe是运用计算机语言学处理文本信息的工具包,可用于如下任务: 在新闻中查找人名、组织或位置。 自动分类Twitter搜索结果。
【导读】专知内容组为大家介绍一个聊天机器人(Chatbot)Tensorflow实战课程系列,其目标是创建一个聊天机器人,可以实时地在Twitch Stream上与人们交谈,而不是完全像个傻瓜。为了创
MixLab的小伙伴看到了一篇关于加速设计流程的文章并转发给了我,其中用到了图像识别、OCR、代码生成等技术,今天碰巧看到一篇算法实现的论文,正好可以对其中的一部分算法进行原理拆解。
学习样本数据集,通过匹配一些参数来建立一个分类器。建立一种分类的方式,主要是用来训练模型的。
从研究人员的主页(HTML)中提取信息,并将信息自动分为三类(您可以添加更多的类)。支持中英文页面。
昨天给番薯智库开放了嵌套导入页面链接的功能(说是开放是因为底层之前已经有了这个功能,现在限定场景和范围进行开放),这样对于一些包含索引目录的页面,可以一次嵌入,批量导入,方便用户快速导入网页训练数据。不过对于在线网页,为了限定范围,只支持导入同一域名下的页面链接。
建立一个很酷的机器学习项目确实很不错,但如果你希望其他人能够看到你的作品怎么办呢?当然,你可以将整个项目放在GitHub上,但这只能给程序员看,如果你想给自己家里的老人看呢?GitHub肯定不行,所以我们想要的是将我们的深度学习模型部署成世界上任何人都轻易访问的Web应用程序。
链接:https://pan.baidu.com/s/1l1AnBgkAAEhh0vI5_loWKw 提取码:2xq4
DeepPavlov 是一个基于 TensorFlow、Keras 和 PyTorch 构建的开源对话式 AI 库。
这里,没有直接采用之前的方案,是因为在设计的时候,发现直接采用颜色等直接特征提取然后进行二值化处理的方法,如果视频中出现颜色类似的区域,则很有可能错误的定位,例如在公交车中车牌区域范围和前窗以及部分的背景比较相似,直接采用这种方法会出错。
这一章我们介绍能自主浏览操作网页的WebAgent和相关的评估数据集,包含初级任务MiniWoB++,高级任务MIND2WEB,可交互任务WEBARENA,多模态WebVoyager,多轮对话WebLINX,和复杂任务AutoWebGLM。
虽然创建一个机器学习项目很酷,但你最终往往还是希望其他人能够看到自己的成果。当然,你可以将整个项目放在 GitHub 上,但是,你的祖父母估计很难看明白。因此,我们想要做的是,将深度学习模型部署成一个任何人都可以访问的 web 应用程序。
在这篇文章中,亲历了ECCV 2018的机器学习研究员Tetianka Martyniuk挑选了6篇ECCV 2018接收论文,概述了超分辨率(Super-Resolution, SR)技术的未来发展趋势。
MIT研究人员开发了一种能够设计出独特黑色小礼服的AI,使用GAN来生成图像,经过设计师的剪裁后,制作出非常有设计感的衣服。
1.1 网站信息页面显示案例: 1.1.1 需求分析: 在网页中显示一个文字信息页面,显示效果如下: 1.1.2 分析: 1.1.2.1 技术分析 【HTML的概述】 什么是HTML HTML:Hyper Text Markup Language 超文本标记语言 超文本:比文本功能更加强大 标记语言:通过一组标签对内容进行描述的一门语言 为什么学习HTML HTML是设计页面基础 在哪些地方可以使用HTML 设计页面的时候都可以使用HTML 如何使用HTML HTML的语法和规范 HTML文件的扩
Xfer 是一款针对 MXNet 的迁移学习,为适那些希望达到以下目的的从业者与研究人员而设计:
本文结构: 什么是 TensorFlow.js 为什么要在浏览器中运行机器学习算法 应用举例:regression 和 tflearn 的代码比较 ---- 1. 什么是 TensorFlow.js TensorFlow.js 是一个开源库,不仅可以在浏览器中运行机器学习模型,还可以训练模型。 具有 GPU 加速功能,并自动支持 WebGL 可以导入已经训练好的模型,也可以在浏览器中重新训练现有的所有机器学习模型 运行 Tensorflow.js 只需要你的浏览器,而且在本地开发的代码与发送给用户的代
选自Floydhub 作者:Emil Wallner 机器之心编译 如何用前端页面原型生成对应的代码一直是我们关注的问题,本文作者根据 pix2code 等论文构建了一个强大的前端代码生成模型,并详细解释了如何利用 LSTM 与 CNN 将设计原型编写为 HTML 和 CSS 网站。 项目链接:https://github.com/emilwallner/Screenshot-to-code-in-Keras 在未来三年内,深度学习将改变前端开发。它将会加快原型设计速度,拉低开发软件的门槛。 Tony B
除了发现隐藏在大量数据中的有洞察力的趋势和模式之外,还有什么比这更有趣?能够轻松地与同事和其他业务团队共享并向他们解释!新的Cloudera 的机器学习( CML ) 1.2 ,我们非常高兴地宣布托管持久的基于Web的应用程序和使用Flash、仪表板和Shiny到共享分析结果及洞察力与企业利益相关者框架仪表盘的支持。跟随本文中的演示,立即开始使用CML的新分析应用程序功能获得更多乐趣。(注意:CDSW 1.7中也提供此功能)。
选自Floydhub 作者:Emil Wallner 机器之心编译 如何用前端页面原型生成对应的代码一直是我们关注的问题,本文作者根据 pix2code 等论文构建了一个强大的前端代码生成模型,并详细解释了如何利用 LSTM 与 CNN 将设计原型编写为 HTML 和 CSS 网站。 项目链接:https://github.com/emilwallner/Screenshot-to-code-in-Keras 在未来三年内,深度学习将改变前端开发。它将会加快原型设计速度,拉低开发软件的门槛。 Tony Be
版权声明:博客文章都是作者辛苦整理的,转载请注明出处,谢谢! https://blog.csdn.net/Quincuntial/article/details/79273631
作者:MXNet作者/亚马逊主任科学家 李沐 【新智元导读】深度学习推动计算机视觉、自然语言处理等诸多领域的快速发展。在AI大热和人才奇缺的今天,掌握深度学习成为进入AI领域研究和应用的必备技能。来自亚马逊主任科学家李沐将以计算机视觉的经典问题——图像分类为例,手把手地教导大家从0到1搭建深度神经网络模型。对于初学者面临的诸多疑问,提供了从环境设置,数据处理,模型训练,效果调优的完整介绍和代码演示,包括使模型快速获得良好效果的常用方法——迁移学习。让大家有一个全景和基础的了解。 深度学习
Rasa Stack 是一组开放源码机器学习工具,供开发人员创建支持上下文的人工智能助理和聊天机器人:
关键时刻,第一时间送达! 近几天,因为阮一峰老师的一条微博,我们看到了这样一个项目:https://weibo.com/1400854834/FE1Tz8TIB?filter=hot&root_com
在机器学习领域,人们总是希望使自己的模型尽可能准确地描述数据背后的真实规律。通俗所言的「准确」,其实就是误差小。在领域中,排除人为失误,人们一般会遇到三种误差来源:随机误差、偏差和方差。偏差和方差又与「欠拟合」及「过拟合」紧紧联系在一起。由于随机误差是不可消除的,所以此篇我们讨论在偏差和方差之间的权衡(Bias-Variance Tradeoff)。
你可以在 GitHub 上找到这个项目的代码:https://github.com/ashnkumar/sketch-code
选自InsightDataScience 作者:Ashwin Kumar 机器之心编译 参与:乾树、李泽南 在人们的不断探索下,「使用人工智能自动生成网页」的方法已经变得越来越接近实用化了。本文介绍的这种名为 SketchCode 的卷积神经网络能够把网站图形用户界面的设计草图直接转译成代码行,为前端开发者们分担部分设计流程。目前,该模型在训练后的 BLEU 得分已达 0.76。 你可以在 GitHub 上找到这个项目的代码:https://github.com/ashnkumar/sketch-code
对于机器学习和人工智能研究人员而言,好多人都只是构建好模型后就没有进一步处理了,停留在一个比较粗糙的模型上面,没有将其变成一个产品,其实好多创业型人工智能公司都是设计好模型后,将其转化成产品,之后再推向市场。每一个深度学习研究者心中或多或少都想成为一名创业者,但不知道超哪个方向发展。那么,本文将从最简单的网页应用开始,一步一步带领你使用TensorFlow创建一个卷积神经网络(CNN)模型后,使用Flash RESTful API将模型变成一个网页应用产品。 本文使用TensorFlow NN模块构建CNN模型,并在CIFAR-10数据集上进行训练和测试。为了使模型可以远程访问,使用Python创建Flask web应用来接收上传的图像,并使用HTTP返回其分类标签。
数据说明 本次比赛将提供3种类型的数据: 1、原始公告pdf,以{公告id}.pdf命名; 2、公告pdf转换的html文件,以{公告id}.html命名; 3、公告对应的结构化数据,以表格的格式给出,每种公告类型提供一份数据,每篇公告可能会对应多条数据,格式说明如下:
你最喜欢用什么工具来编写机器学习模型?数据科学家们对这个永恒的问题会给出各种不同的答案。一些人喜欢RStudio,另一些人更喜欢Jupyter Notebooks。我绝对属于后者。
本文首先介绍了TensorFlow.js的重要性及其组件,并介绍使用其在浏览器中构建机器学习模型的方法。然后,构建使用计算机的网络摄像头检测身体姿势的应用程序。
【导读】我们之前介绍了一系列卡耐基梅隆大学的课程,今天,我们又带来了CMU 2018春季最新的课程“Neural Networks for NLP”介绍,该课程是CMU语言技术学院和计算机学院联合开课,主要内容是教学生如何用神经网络做自然语言处理。本文中,我们梳理了该课程的主要内容:神经网络、词向量、语言模型、CNNs和RNNs在NLP中的应用等等,课程涉及几乎全部NLP问题,内容非常全面,强烈推荐给从事NLP研究的读者。 专知内容组附上上一次CMU2018和CMU2017年课程:深度学习的内容: 1. C
选自RStudio 作者:Tareef Kawaf 机器之心编译 参与:路雪、李泽南 日前,RStudio 博客发文称其已开发出适合 R 语言用户的 TensorFlow 接口,R 语言的用户也可以方便地使用 TensorFlow 了。博客还介绍了接口中的包和工具、学习资源等。以下,机器之心对本文进行了编译介绍。 链接:https://tensorflow.rstudio.com/ 在过去一年中,RStudio 的开发者们一直在努力为 R 语言构建 TensorFlow 的接口。几天前,开发小组终于宣布大部
您可以使用这20个提示,技巧和技术来解决过度拟合问题并获得更好的通用性
机器学习的实现路线充满了反复试验。在这个领域,新手工程师和科学家将不断调整他们的算法和模型。此过程中会出现挑战,尤其是在数据处理和确定最优模型的时候。
一个非常好用的深度学习框架undefined飞桨(PaddlePaddle)以百度多年的深度学习技术研究和业务应用为基础,是中国首个自主研发、功能完备、 开源开放的产业级深度学习平台,集深度学习核心训练和推理框架、基础模型库、端到端开发套件和丰富的工具组件于一体。目前,飞桨累计开发者535万,服务企业20万家,基于飞桨开源深度学习平台产生了67万个模型。飞桨助力开发者快速实现AI想法,快速上线AI业务。帮助越来越多的行业完成AI赋能,实现产业智能化升级。
分割线-----------------------------------------------------------------
Scikit-learn是使用最广泛的Python机器学习库之一。它有标准化和简单的接口,用于数据预处理和模型训练、优化以及评估。
选自EliteDataScience 机器之心编译 参与:蒋思源、晏奇 在本教程中,作者对现代机器学习算法进行一次简要的实战梳理。虽然类似的总结有很多,但是它们都没有真正解释清楚每个算法在实践中的好坏,而这正是本篇梳理希望完成的。因此本文力图基于实践中的经验,讨论每个算法的优缺点。而机器之心也在文末给出了这些算法的具体实现细节。 对机器学习算法进行分类不是一件容易的事情,总的来看,有如下几种方式:生成与判别、参数与非参数、监督与非监督等等。 然而,就实践经验来看,这些都不是实战过程中最有效的分类算法的方式。
这么多环节,任何地方出一点问题,都会拉长开发周期。因此,不少公司,比如Airbnb已经开始用机器学习来提高这个过程的效率。
分类和回归是最常见的机器学习问题类型之一。在本笔记中,我们将使用 PyTorch 解决几个不同的分类问题(二元分类,多类分类,多标签分类)。换句话说,我们通过获取一组输入并预测这些输入集属于哪个类别。
推荐理由 对于机器学习算法的盘点,网上屡见不鲜。但目前,还没人能结合使用场景来把问题说明白,而这一点正是本文的目的所在。 在文章中,作者将结合他的实际经验,细致剖析每种算法在实践中的优势和不足。 本文的目的,是务实、简洁地盘点一番当前机器学习算法。尽管人们已做过不少盘点,但始终未能给出每一种算法的真正优缺点。在这里,我们依据实际使用中的经验,将对此详加讨论。 归类机器学习算法,一向都非常棘手,常见的分类标准是这样的:生成/判别、参数/非参数、监督/非监督,等等。 举例来说,Scikit-Learn
克服过拟合和提高泛化能力的20条技巧和诀窍 你是如何提升深度学习模型的效果? 这是我经常被问到的一个问题。 有时候也会换一种问法: 我该如何提高模型的准确率呢? ……或者反过来问: 如果我
集成学习(Ensemble learning)是这样一个过程,按照某种算法生成多个模型,如分类器或者称为专家,再将这些模型按照某种方法组合在一起来解决某个智能计算问题。集成学习主要用来提高模型(分类,预测,函数估计等)的性能,或者用来降低模型选择不当的可能性。集成算法本身是一种监督学习算法,因为它可以被训练然后进行预测,组合的多个模型作为整体代表一个假设(hypothesis)。
https://item.m.jd.com/product/10023427978355.html
领取专属 10元无门槛券
手把手带您无忧上云