在二分查找的每一步中,我们只需要比较中间元素 mid 的平方与 x 的大小关系,并通过比较的结果调整上下界的范围。 由于我们所有的运算都是整数运算,不会存在误差
比如f(10) = 1平方 + 2平方 + 5平方 + 10平方 = 1 + 4 + 25 + 100 = 130。
这道题很明显不是让我们调用 Math.sqrt() 方法来计算,而是自己实现一个求平方根的算法。第一反应想到的方法是暴力循环求解!从 1 开始依次往后求平方数,当平方数等于 x 时,返回 i ;当平方数大于 x 时,返回 i - 1。
既然已经学习了 Java 中的流程控制,接下来就来实际操作下,利用我们所学知识来解决实际的问题。
因为不是科班出身,所以即使编程一段时间也时常感觉自身基础知识非常不扎实,于是在最近开始补习算法和计算机理论的基础知识。
假定输入y是整数,我们用折半查找来找这个平方根。在从0到y之间必定有一个取值是y的平方根,如果我们查找的数x比y的平方根小,则x2<y,如果我们查找的数x比y的平方根大,则x2>y,我们可以据此缩小查找范围,当我们查找的数足够准确时(比如满足|x2-y|<0.00001),就可以认为找到了y的平方根。
布尔类型 使用 boolean 关键字声明,只能取 true 或 false 的值。
在Python中,使用运算符“**”和内置模块math、cmath的函数sqrt()都可以直接计算平方根,其中运算符“**”和cmath.sqrt()可以计算负数的平方根,math.sqrt()的参数不能为负数。例如
在计算平方根的倒数时,传统的计算方法是先计算a的平方根sqrt(a),再计算它的倒数1/sqrt(a)。但在计算平方根时使用了牛顿迭代法,大量的浮点运算速度很慢。
例49:从键盘输入一个小于1000的正数,要求输出它的平方根(如平方根不是整数,则输出其整数部分)。要求在输入数据后先对其进行检查是否为小于1000的正数。若不是,则要求重新输入。
实现 int sqrt(int x) 函数。 计算并返回 x 的平方根,其中 x 是非负整数。 由于返回类型是整数,结果只保留整数的部分,小数部分将被舍去。
https://leetcode-cn.com/problems/binary-search/
一个函数从数学上来说可以有无数个函数列收敛于这个函数,那么程序逼近实现来说可以有无数种算法,平方根自然也不例外。 不知道有多少人还记得手算平方根,那是满足每次在结果上添加一位,也就是按位逼近运算结果的唯一算法。至于数学上如何证明这个唯一性我就不说了,数学证明不会有那么多人有兴趣。按位逼近更加适合手算,举个大家更熟悉的例子,那就是手算除法。我这里就采用按位逼近的手算方法。 要说手算平方根,原理其实非常简单, 一是平方根函数是严格单调增函数, 二就是以下这个恒等式满足 (a*N+b)2
了解了浮点数的存储以及手算平方根的原理,我们可以考虑程序实现了。 先实现一个64位整数的平方根,根据之前的手算平方根,程序也不是那么难写了。 #include <stdint.h> uint64_t _sqrt_u64(uint64_t a) { int i; uint64_t res; uint64_t remain; //0的平方根是0,特殊处理一下 if(a == 0ull) re
完整版教程下载地址:http://www.armbbs.cn/forum.php?mod=viewthread&tid=94547 第13章 DSP快速计算函数-三角函数和平方根 本期教
什么是质数:只能被1和他本身整除的数就是质数。 例如:2、3、5、7、11、13…
今天分享一道 LeetCode 上很有意思的题目,如果理解清楚了题意,只需要一行代码就能解决。
C++库中有多种函数可用于计算数字的平方根。最突出的是使用 sqrt。它以双重作为论据。 header 定义了另外两个内置函数,用于计算一个数字(sqrt 除外)的平方根,该数字的参数类型为float和long double。因此,用于计算C++平方根的所有函数都是:
完整版教程下载地址:http://www.armbbs.cn/forum.php?mod=viewthread&tid=94547 第13章 DSP快速计算函数-三角函数和平方根 本期教程
针对计算2~50偶数平方根之和问题,提出引进math方法,通过python实验,证明该方法是有效的,本文的方法有不够详细,未能很好的解释,未来可以继续研究的问题可以是计算任意数的平方根之和。
这个等式是一元二次方程,解方程即可求得x。现在正实数平方根计算问题已转换为解一元二次方程问题。
咦咦咦,各位小可爱,我是你们的好伙伴——bug菌,今天又来给大家普及Java SE相关知识点了,别躲起来啊,听我讲干货还不快点赞,赞多了我就有动力讲得更嗨啦!所以呀,养成先点赞后阅读的好习惯,别被干货淹没了哦~
Java中如果数据绝对值大于0.001而小于10000000用常规小数表示,否则采用科学计数法表示
前几天给大家介绍过一款IDEA编码自动注释工具,可以帮助小伙伴们的编程效率,想必很多人已经下载使用了,还没看过想了解下的小伙伴点这里:IDEA编码自动注释工具,让你的开发更有效率
**6.22(数学:平方根的近似求法)有几种实现Math类中sqrt方法的技术。其中一个称为巴比伦法。它通过使用下面的公式反复计算近似地得到一个数字n的平方根:
Python 中的错误计算器是某些计算给出错误结果的计算器。在 Python 中,我们可以创建自己的计算器并使用它来进行数学计算。如果我们想创建一个有缺陷的计算器,我们需要在执行计算的函数中创建或引入错误。在本文中,我们将使用 Python 创建一个有缺陷的计算器。
福哥答案2020-10-05:#福大大架构师每日一题# 简单回答: y*y=x mod p,已知x,p并且互质,求y。 1.判断是否存在模平方根。 1.1.欧拉判别法。有代码。 x**(p-1)/2%p==1。 1.2.高斯二次互反律。无代码。 2.Tonelli–Shanks算法。有代码。 代码用python编写,代码如下: # -*-coding:utf-8-*- def quick_power(a, b, p): """ 求快速幂。ret = a^b%p。 Args:
其中 r = abs(z) 是半径,phi = angle(z) 是在闭区间 -pi <= phi <= pi 内的相位角。
假设有一个数c,我们求它的平方根x,那么有一个等式,x^2 = c;挪到一边就是求 f = x^2 – c的根x
Python作为一种编程语言,拥有简洁、高效的表达能力。与此同时,Python语言环境中还配备各种软件库,即模块。结合实际问题,选择适当的模块,便可生成简单、快速、正确的程序。
输入: 8 输出: 2 说明: 8 的平方根是 2.82842..., 由于返回类型是整数,小数部分将被舍去。
起源于一篇《改变计算技术的伟大算法》文章,知道这个算法,然后google一下,维基讲的还不错,本文权当自己理清下思路。先贴源代码,为《雷神之锤III竞技场》源代码中的应用实例,剥离了C语言预处理器的指令,并附上了原有的注释。
源地址 https://tour.go-zh.org/flowcontrol/8 一、练习题描述 为了练习函数与循环,我们来实现一个平方根函数:用牛顿法实现平方根函数。 计算机通常使用循环来计算 x 的平方根。从某个猜测的值 z 开始,我们可以根据 z² 与 x 的近似度来调整 z,产生一个更好的猜测: z -= (z*z - x) / (2*z) 重复调整的过程,猜测的结果会越来越精确,得到的答案也会尽可能接近实际的平方根。 在提供的 func Sqrt 中实现它。无论输入是什么,对 z 的一个恰当的猜
有没有一种触目惊心的感觉,感觉回去检查检查自己的代码,有没有一些数值运算吧,哈哈。这个问题相当严重,比如你有9.999999999999元,你的计算机是不会认为你可以购买10元的商品的。在有的编程语言中提供了专门的货币类型来处理这种情况,但是Java没有。
1.1.3: Modules and Methods 模块和方法 让我们谈谈模块。 Let’s talk a little bit about modules. Python模块是代码库,您可以使用import语句导入Python模块。 Python modules are libraries of code and you can import Python modules using the import statements. 让我们从一个简单的案例开始。 Let’s start with
这段代码首先包含了必要的头文件,然后声明了一个变量 number 并赋予一个正数值,接着安全地调用了 sqrt() 函数,最后打印出了结果。
代码思路:首先列出指定范围内所有候选数字,然后从前往后依次选择一个数字去除以后面所有数字,能够被整除的肯定不是素数,把这些数字过滤掉,然后重复这个过程,直到选择的除数大于最大数字的平方根为止。代码主要演示内置函数filter()和切片的用法,实际上这个算法的效率并不是很高。 def primes2(maxNumber): '''筛选法获取小于maxNumber的所有素数''' #待判断整数 lst = list(range(3, maxNumber, 2)) #最大整数的平方根 m =
在解决实际问题时,对数字和日期的处理是非常普遍的,如数学问题、随机数问题和日期问题等。为了解决这些问题,Java 提供了处理相关问题的类,包括 Math 类、Random 类、BigInteger 类、Date 类等。
链接:69. Sqrt(x) - 力扣(LeetCode) (leetcode-cn.com)
1. 代码示例1 /* 迭代法求一个数的平方根 */ #define Epsilon 1.0E-6 /*控制解的精度*/ #include<math.h> main() { float a,x0,x1; printf("请输入要求的数:"); scanf("%f",&a); x0=a/2; x1=(x0+a/x0)/2; while(fabs(x1-x0)>=Epsilon) {
今天是小浩算法“365刷题计划”第67天。继续为大家分享二分法系列篇的内容,看一道比较简单的题目。
直接利用 Java 中封装类 Integer 所提供的 toBinaryString() 方法即可。
在一行中按照“sum = S”的格式输出部分和的值S,精确到小数点后两位。题目保证计算结果不超过双精度范围。
功 能: 计算一个非负实数的平方根 函数原型: 在VC6.0中的math.h头文件的函数原型为double sqrt(double); 说明:sqrt系Square Root Calculations(平方根计算),通过这种运算可以考验CPU的浮点能力。 头文件:math
前言 2018.10.31号打卡,今天你坚持了吗? 题目 leetcode 69 x的平方根 中文链接: https://leetcode-cn.com/problems/sqrtx/ 英文链接: https://leetcode.com/problems/sqrtx/ 分类:二分查找这一类 题目详情 实现 int sqrt(int x) 函数。 计算并返回 x 的平方根,其中 x 是非负整数。 由于返回类型是整数,结果只保留整数的部分,小数部分将被舍去。 示例 1: 输入: 4输出: 2 示例 2: 输入
方法一: 使用内置模块 >>> import math >>> math.pow(12, 2) # 求平方 144.0 >>> math.sqrt(144) # 求平方根 12.0 >>> 方法二: 使用表达式 >>> 12 ** 2 # 求平方 144 >>> 144 ** 0.5 # 求平方根 12.0 >>> 方法三: 使用内置函数 >>> pow(12, 2) # 求平方 144 >>> pow(144, .
SQRT 返回 NUMERIC 或 DOUBLE 数据类型。如果 numeric-expression 是数据类型 DOUBLE,则 SQRT 返回 DOUBLE;否则,它返回 NUMERIC。
1. 题目 69. x 的平方根 2. 描述 实现 int sqrt(int x) 函数。 计算并返回 x 的平方根,其中 x 是非负整数。 由于返回类型是整数,结果只保留整数的部分,小数部分将被舍去。 示例 1: 输入: 4 输出: 2 示例 2: 输入: 8 输出: 2 说明: 8 的平方根是 2.82842…, 由于返回类型是整数,小数部分将被舍去。 3. 实现方法 3.1 方法 1 3.1.1 思路 二分查找 由于 x 的平方根的整数部分 res 是满足 res * res
领取专属 10元无门槛券
手把手带您无忧上云