在Java的世界里,集合操作是日常开发中不可或缺的一部分。当我们面对庞大的数据集时,如何高效地进行分片处理,成为了提升系统性能的关键。今天,就让我们一起探索Java中List分片的奥秘,看看如何将一个庞大的List分割成多个小块,以便于并行处理或分页显示。
往期文章在热点数据如何更新的一篇文章中有提到对账系统。其实我在实际业务场景中是有遇到过类似对账的优化问题的。说优化之前要掌握一点就是一定要掌握Java并发包的相关特性。本章节对此有很大依赖。
上面这种写法应该很常见,代码很简单,假设上面每个步骤耗时200ms,此接口总共耗时>=600毫秒,其他还涉及到网络传输耗时,估计总共会在700ms左右,此接口有没有优化的空间,性能能够提升多少?我们一起来挑战一下。
相信很多学Java的同学都有想转大数据或者学大数据的想法,但是一看到网上那些大数据的技术栈,就一脸懵逼,什么Hadoop、HDFS、MapReduce、Hive、Kafka、Zookeeper、HBase、Sqoop、Flume、Spark、Storm、Flink等等技术。
随着计算机的飞速发展,网站产生了大量数据,数据规模远超传统数据库系统能够处理的规模,我们把具有量大,存储速度要求高,数据多样性丰富的特征的数据统称为大数据。
标题中问出了两个问题,一个是有没有做过性能优化的工作,一个是从哪些方面入手做性能优化。对于第一个问题,我们可以直接回答有或者没有。相信小伙伴们都希望自己做过性能优化的工作,如果是回答做过,那第二个问题,我们又该如何回答呢?
由实施 / 用户 将别的系统的数据填入我们系统中的 Excel 模板,应用将文件内容读取、校对、转换之后产生欠费数据、票据、票据详情并存储到数据库中。
转自:https://github.com/alibaba/RocketMQ/wiki/rmq_vs_kafka 淘宝内部的交易系统使用了淘宝自主研发的Notify消息中间件,使用MySQL作为消息存储媒介,可完全水平扩容,为了进一步降低成本,我们认为存储部分可以进一步优化,2011年初,Linkin开源了Kafka这个优秀的消息中间件,淘宝中间件团队在对Kafka做过充分Review之后,Kafka无限消息堆积,高效的持久化速度吸引了我们,但是同时发现这个消息系统主要定位于日志传输,对于使用在淘宝交易、订
Java流(Stream)是一种高级迭代器,它允许我们以 声明式的方式 处理数据集合。与传统的迭代器不同,流不存储数据,而是代表了一个计算的过程,这个过程可以对数据集合进行操作,比如过滤、排序、聚合等。流就像是一个管道,数据在这个管道中按照一定的规则流动,最终得到处理结果。
很多人一直唠叨着并发中的新概念。然而,许多开发人员还没有机会把过多的注意力都放在上面。在这篇文章中,我们将带您了解Java 8 streams、 Hadoop、 Apache Spark、 Quasar fibers以及响应式编程,让你迅速入门。尤其是如果你不经常用它们的话。一句话,它并不遥远,它就在我们身边。
随着互联网的高速发展,互联网行业已经从IT时代慢慢步入到DT时代。对于Java程序员的要求越来越高,只是单纯的掌握CRUD以不足以胜任互联网公司的相关职位,大量招聘岗位显示:如果是面试中高级的Java岗,基本上都需要懂性能优化的相关知识。今天,我们就一起来聊聊如何进行性能优化这个话题。
过去,TiDB 由于不支持存储过程、大事务的使用也存在一些限制,使得在 TiDB 上进行一些复杂的数据批量处理变得比较复杂。
Solr发展飞快,现在最新的版本已经6.1.0了,下面来回顾下Solr6.x之后的一些新的特点: (1)并行SQL特性支持,编译成Streaming 表达式,可以在solrcloud集群中,并行执行 (2)SolrCloud的Collection被抽象成关系型数据库表,现在不仅仅可以支持强大的全文检索,还通过SQL支持像数据库一样的BI分析 (3)在SQL的where语句中,全面支持强大的Lucene/Solr语法 (4)一些聚合操作例如Group会自动优化成并行操作,通过使用St
背景 : 近来公司要做报表,随简单研究一下Kylin。Kylin可谓是我泱泱中华在Apace史上耀眼的一笔。
在讲解sparkStreaming优化方法之前先看几个sparkStreaming的监控指标:
大家好,又见面了,我是你们的朋友全栈君。 大数据学习路线 java(Java se,javaweb) Linux(shell,高并发架构,lucene,solr) Hadoop(Hadoop,HDFS,Mapreduce,yarn,hive,hbase,sqoop,zookeeper,flume) 机器学习(R,mahout) Storm(Storm,kafka,redis) Spark(scala,spark,spark core,spark sql,spark streaming,spark
接下来,我们是要讲解商品详情页缓存架构,缓存预热和解决方案,缓存预热可能导致整个系统崩溃的问题以及解决方案;
自1998年JDK1.0(Java1.0)发布以来,Java已经受到了学生、程序员、整个软件行业人员等一大批活跃用户的欢迎。这一语言极富活力,不断被用在大大小小的项目里。从Java1.1(1997年) 一直到Java 7(2011年),Java通过增加新功能,不断得到良好的升级。Java 8则是在2014年3月发布的……
在当今大数据时代,处理和存储海量数据已成为许多应用的关键需求。为了满足这一需求,分布式计算和存储技术应运而生。Java作为一种广泛使用的编程语言,具有丰富的生态系统和强大的工具支持,被广泛应用于分布式计算和存储领域。
流是 Java8 中 API 的新成员,它允许你以声明式的方式处理数据集合(通过查询语句来表达,而不是临时编写一个实现)。这有点儿像是我们操作数据库一样,例如我想要查询出热量较低的菜品名字我就可以像下面这样:
MySQL优化 MySQL 优化方案 对于 **MySQL** 的性能优化,大部分情况下都是想减少查询所消耗的时间;而一个查询是由很多个环节组成,那么就需要从每个环节消耗时间进行入手。 配置优化(连接) 当客户端连接到服务端有可能服务端连接数不够导致应用程序获取不到连接而报出 **Mysql: error 1040: Too many connections**** **的错误。一般情况下可以从两个方面去解决连接数不够的问题: 对于服务端来说,可以增加服务端的可用连接数(**MySQL 8.0.
集合是Java中使用最多的API 。 可以让你把数据分组并加以处理。尽管集合对于几乎任何一个Java应用都是不可或缺的,但集合操作却远远算不上完美。
CompletableFuture 是 Java 8 引入的一个类,用于支持异步编程和非阻塞操作。它提供了一种简单而强大的方式来处理异步任务,可以轻松地实现并行、非阻塞的操作,并且提供了丰富的方法来处理任务的完成状态、异常情况以及多个任务之间的串联和组合。
例如,电商系统中的订单表,常常使用用户ID的Hash值来实现分表分库,这样是为了减少单个表的数据量,优化用户查询订单的速度。
https://github.com/elastic/elasticsearch/blob/001fcfb931454d760dbccff9f4d1b8d113f8708c/server/src/main/java/org/elasticsearch/index/reindex/ReindexRequest.java
以上是 Java 处理大型数据集的一些解决方案,每种解决方案都有适合的场景和使用范围。具体情况需要结合实际的业务需求来选择合适的方案。
这些场景体现了多任务程序设计的另一面。我们前面学习的分支/合并框架以及并行流是实现并行处理的宝贵工具;它们将一个操作分为多个子操作,在多个不同的核、CPU甚至是机器上并行地执行这些子操作。
本篇内容大部分来自《Java 8实战》 流是什么? 流是Java API的新成员,它允许你以声明性方式处理数据集合(通过查询语句来表达,而不是临时写一个实现)。 就现在来说,你可以把它们看成遍历数据集
最近我听到了很多关于此话题的讨论。同样,这也是一个大数据领域经验不足的客户非常喜欢提问的问题。实际上,我不喜欢这个含糊不清的词语,但是通常客户会找到我们使用它们,因此我不得不使用。
现在大部分的CPU都是多核,我们都知道想要提升我们应用程序的运行效率,就必须得充分利用多核CPU的计算能力;Java早已经为我们提供了多线程的API,但是实现方式略微麻烦,今天我们就来看看Java8在这方面提供的改善。
针对现状,写一个主库,挂着多个从库,然后从多个从库来读,那不就可以支撑更高的读并发压力了吗?
stream() :Java 8 API添加了一个新的抽象称为流Stream,可以让你以一种声明的方式处理数据。
一个Flink程序由多个Operator组成(source、transformation和 sink)。
现代应用无时无刻不在与数据打交道,数据计算无处不在,报表统计、数据分析、业务处理不一而足。当前数据处理的主要手段仍然是以关系数据库为代表的相关技术,虽然使用高级语言(如Java)硬编码也能实现各类计算,但远不如数据库(SQL)方便,数据库在当代数据处理中仍然发挥举足轻重的作用。
Java8 - 使用工厂方法 supplyAsync创建 CompletableFuture
DCM 是什么 现代应用无时无刻不在与数据打交道,数据计算无处不在,报表统计、数据分析、业务处理不一而足。当前数据处理的主要手段仍然是以关系数据库为代表的相关技术,虽然使用高级语言(如 Java)硬编码也能实现各类计算,但远不如数据库(SQL)方便,数据库在当代数据处理中仍然发挥举足轻重的作用。 不过,随着信息技术的发展,存储与计算分离、微服务、前置计算、边缘计算等架构与概念的兴起,过于沉重、封闭的数据库在应对这些场景时越来越显得捉襟见肘。数据库要求数据入库才能计算,但面对丰富的多样数据源时,数据入库不仅效
作者个人研发的在高并发场景下,提供的简单、稳定、可扩展的延迟消息队列框架,具有精准的定时任务和延迟队列处理功能。自开源半年多以来,已成功为十几家中小型企业提供了精准定时调度方案,经受住了生产环境的考验。为使更多童鞋受益,现给出开源框架地址:
一、Apache Impala 1.Impala基本介绍 impala是cloudera提供的一款高效率的sql查询工具,提供实时的查询效果,官方测试性能比hive快10到100倍,其sql查询比sparkSQL还要更加快速,号称是当前大数据领域最快的查询sql工具, impala是参照谷歌的新三篇论文(Caffeine–网络搜索引擎、Pregel–分布式图计算、Dremel–交互式分析工具)当中的Dremel实现而来,其中旧三篇论文分别是(BigTable,GFS,MapReduce)分别对应我们即将学的HBase和已经学过的HDFS以及MapReduce。 impala是基于hive并使用内存进行计算,兼顾数据仓库,具有实时,批处理,多并发等优点。
ConcurrentHashMap是Java中一个重要的并发容器,用于在多线程环境下安全地管理键值对数据。自Java 1.5版本以来,它一直在不断演进,不断优化性能和并发度。本文将深入探讨ConcurrentHashMap的设计演进,特别关注为什么在Java 8中放弃了分段锁,以及如何通过CAS(Compare-And-Swap)来解决相关问题。
impala是cloudera提供的一款高效率的sql查询工具,提供实时的查询效果,官方测试性能比hive快10到100倍,其sql查询比sparkSQL还要更加快速,号称是当前大数据领域最快的查询sql工具。
Hadoop在过去的几年里已经变得很成熟了。下面的图1-2显示了Hadoop生态系统堆栈。Apache Phoenix是HBase的SQL包装,它需要基本的HBase理解,在某种程度上,还需要理解它原生的调用行为。了解其他Hadoop生态系统组件以及HBase,将有助于更好地理解大数据领域,并利用Phoenix及其最佳可用特性。在本章中,我们将概述这些组件及其在生态系统中的位置。
案例:对账系统的业务是这样的,用户通过在线商城下单,会生成电子订单,保存在订单库;之后物流会生成派送单给用户发货,派送单保存在派送单库。为了防止漏派送或者重复派送,对账系统每天还会校验是否存在异常订单。对账系统的处理逻辑很简单,系统流程图如下。目前对账系统的处理逻辑是首先查询订单,然后查询派送单,之后对比订单和派送单,将差异写入差异库。
RocketMQ作为一款分布式的消息中间件(阿里的说法是不遵循任何规范的,所以不能完全用JMS的那一套东西来看它),经历了Metaq1.x、Metaq2.x的发展和淘宝双十一的洗礼,在功能和性能上远超ActiveMQ。
针对第一个问题,就是ETL技术-数据的抽取,清洗,加载。传统数据抽取、清洗、加载是无法做到的。例如一个1TB的数据,需要抽取一些客户的基本信息。上万的文件,多种数据库,每个数据库有很多节点等,这些问题如何解决。第二是时间问题,如果这个ETL过长需要半个月时间,那么就没有意义的。
1.Spark是一个用来实现快速而通用的集群计算的平台,扩展了MapReduce计算模型,支持更多计算模式,包括交互式查询和流处理
向量化引擎是OLAP数据库提升性能的有效技术。翻到PostgreSQL邮件列表有对向量化引擎的讨论。这里继续进行整理,以作分析。
领取专属 10元无门槛券
手把手带您无忧上云