一、整数快速幂 顾名思义,快速幂就是快速算底数的n次幂。其时间复杂度为 O(log₂N), 与朴素的O(N)相比效率有了极大的提高。...res *= x; } x *= x; //每右移一次,最低位的权重都要乘以x y /= 2; //右移 } return res; } 二、矩阵快速幂...矩阵快速幂和整数快速幂的思想一致,只不过答案矩阵的初始状态不再是整数1,而是一个单位矩阵:单位矩阵在矩阵乘法中的作用等同于整数中的1。...mod) * (b.mat[k][j] % mod)) % mod; c.mat[i][j] %= mod; } } } return c; } 定义矩阵快速幂
,编写一个函数来判断它是否是 2 的幂次方。...解释: 20 = 1 示例 2: 输入: 16 输出: true 解释: 24 = 16 示例 3: 输入: 218 输出: false 方法1:我们对一个数字进行为运算操作,经过观察显然有2的整数次幂其二进制数只有一位为...1,那么我们利用这个特点,进行位右移操作,统计1个总个数,最后凭借总个数判断是否为2的整数次幂 代码1: class Solution { public boolean isPowerOfTwo(int...1){ return false; } n=n>>1; } return true; } } 方法2,这里我们仍然利用2的整数次幂只有一位是...1的特点进行解题,但是不再用位移操作,二是利用一个性质,2的整数次幂如1000 减1得到的数为0111,除了最高位,其余位都为1,那么进行与运算必得到0;但是如果不是2的整数次幂,其-1,最高位并仍然为
之前做题目喷到一题,自己通过递归求解也能做出来,但是数据量一大超过10000,就基本上凉凉了,所以自己之后一直看了别人的解法,认识到了矩阵快速幂的好处,自己之前也碰到过,但是只是简单了解了一下,所以什么东西最好还是精一点的好...首先一般的幂运算,普通的解法就是一次乘,比如说X^12,可能就是简单的12个X相乘,总共计算的c次数就是12次,但是我们可以把12分解成12=4+8,那么只需要计算4次方以及8次方,这样我们一次计算2次方...下面就是详细的代码: import java.util.Scanner; public class Main { public static int [][] figure(int [][]num1...sc.nextInt(); } } int [][]num3=figure(num1, num2); int [][]num4=figure1(num3, 4); } } 通常情况下矩阵快速幂不会单独使用...,一般都是与动态规划一同使用,毕竟矩阵快速幂中的矩阵就类似于状态方程。
看标题:快速幂和矩阵快速幂,好像挺高大上。其实并不是很难,快速幂就是快速求一个数的幂(一个数的 n 次方)。...快速幂 首先,来看一下幂,我们知道,假设有一个整数 x, 如果我们要求出 x^n (即为 x 的 n 次方)的值,最容易想到的办法就是循环相乘(这里不考虑整数溢出的情况下),于是我们很容易就可以写出下面的代码...其实,就是通过快速幂的方法。...理解了上面的几点,相信快速幂就难不到你了。下面来看看矩阵快速幂: 矩阵快速幂 其实矩阵快速幂的思想是和快速幂一样的,矩阵快速幂是用于快速求出一个矩阵的 n 次方的方法。...Ok,给定数据测试正确,有了这个函数,我们写矩阵快速幂的代码就简单了,我们把矩阵看成一个数,矩阵乘法的函数我们已经写好了,那么我们仿照快速幂的写法,实现矩阵快速幂: /** * Describe:实现矩阵快速幂
文章目录 快速幂 矩阵快速幂 例题 HDU-2817 HDU-3117 快速幂 ---- image.png int fastpow(int a, int n) { int res = 1;...= (res * a) % mod; a = (a * a) % mod; n >>= 1; //n右移一位 } return res; } 矩阵快速幂...(res.a[i][j] + x.a[i][k] * y.a[k][j]) % mod; return res; } matrix fastm(matrix a, int n) { //矩阵快速幂...Sample Input 2 1 2 3 5 1 2 4 5 Sample Output 5 16 给出序列前3项,要求输出第n项,判断一下等差还是等比,等比的话套快速幂。
快速幂运算 1.什么是快速幂 2.快速幂的“小数”运算 3.高精度(大数)的快速幂 1.什么是快速幂 快速幂,是指在进行幂运算的时候,用一种快速方法得出答案。...比如,要求2^100的值,那按照最简单的方式,就是一个一个2去相乘,然后最终得到答案,那么这样就要计算100次,非常浪费时间,那么快速幂就是使用一种技巧使得将其计算次数减少,快速得到答案。...2.快速幂的“小数”运算 对于系统内置类型的整型,暂且叫他“小数”,这个时候进行快速幂运算,代码如下: #include #include #include<iostream...1000000000007取模的最终值是:", n); while (n > 0) //快速幂模板 { if (n%2 == 1) ans = (ans%mod * temp%mod) % mod...用一张图来表示 3.高精度(大数)的快速幂 上面的代码发现当n的值稍微大一点就不行了,但是用高精度运算就不要有这种限制。
文章目录 快速幂 矩阵快速幂 慢速乘 例题 HDU-2817 HDU-3117 XUJC-1395 image.png int fastpow(int a, int n) { int res =...= (res * a) % mod; a = (a * a) % mod; n >>= 1; //n右移一位 } return res; } 矩阵快速幂...(res.a[i][j] + x.a[i][k] * y.a[k][j]) % mod; return res; } matrix fastm(matrix a, int n) { //矩阵快速幂...; } return res; } 慢速乘 慢速乘,顾名思义,之所以慢是因为把乘法拆成了若干次加法运算,但是我们可以在每次加法时对中间结果进行取模,所以可以防止大数相乘溢出,其原理同快速幂...Sample Input 2 1 2 3 5 1 2 4 5 Sample Output 5 16 分析: 给出序列前3项,要求输出第n项,判断一下等差还是等比,等比的话套快速幂。
Tag : 「动态规划」、「线性 DP」、「记忆化搜索」、「打表」、「矩阵快速幂」 写一个函数,输入 n ,求斐波那契(Fibonacci)数列的第 n 项(即 F(N))。...fib(int n) { return cache[n]; } } 时间复杂度:将打表逻辑放到本地执行,复杂度为 ;否则为 , 为常量,固定为 空间复杂度: 矩阵快速幂...对于数列递推问题,可以使用矩阵快速幂进行加速,最完整的介绍在 这里 讲过。...将其依赖的状态存成列向量: 目标值 所在矩阵为: 根据矩阵乘法,不难发现: 我们令: 起始时,我们只有 ,根据递推式得: 再根据矩阵乘法具有「结合律」,最终可得: 计算 可以套用「快速幂
1 #include<iostream> 2 #include<cstdio> 3 #include<cmath> 4 using namespace ...
Tag : 「动态规划」、「递归」、「递推」、「矩阵快速幂」、「打表」 泰波那契序列 Tn 定义如下: T0 = 0, T1 = 1, T2 = 1, 且在 n >= 0 的条件下 Tn+3 = Tn...+ Tn+1 + Tn+2 给你整数 ,请返回第 个泰波那契数 的值。...这还是一道「矩阵快速幂」的板子题。...首先你要对「快速幂」和「矩阵乘法」概念有所了解。 矩阵快速幂用于求解一般性问题:给定大小为 的矩阵 ,求答案矩阵 ,并对答案矩阵中的每位元素对 取模。...对于此类的「数列递推」问题,我们可以使用「矩阵快速幂」来进行加速(比如要递归一个长度为 的数列,线性复杂度会被卡)。 使用矩阵快速幂,我们只需要 的复杂度。
文章目录 零 这是打卡的第15天,由于某些原因我旷了3天今天先完成今天的任务,会抽时间补上的,主要的讲解知识点在 《算法零基础100讲》(第15讲)二分查找快速幂 一 概况 三种情况: 源码解析
遇到这种情况下快速幂算法能够很好的解决我们的需求。...return x r = pow(x, math.floor(n/2)) return r*r if n%2 == 0 else r*r*x 迭代实现 任意一个正整数都可以用二进制来表示
一、快速幂 快速幂算法是用来快速计算指数表达式的值的,例如 210000000,普通的计算方法 2*2*2*2…10000000次,如果一个数字的计算都要计算那么多次的话,那么这个程序一定是失败的。...快速幂思想及实现 快速幂思想其实很简单,就是公式的转换 1、当指数是偶数时,我们可以让指数除以2,底数乘以底数 2、当指数是奇数时,我们可以将指数变为偶数 #include ...矩阵快速幂,即给定一个矩阵 ),快速计算 。...一般来说,矩阵快速幂只会涉及方阵即 ,所以下面以方阵为例。...其中数字2 为抽象出的矩阵边长 2^32 为矩阵乘法运算的时间,logn为快速幂运算时间。
快速幂算法思想:迭代/二进制 我们知道一个公式:a*b%c=(a%c*b%c)%c 如果要求ab%c: 一、迭代 当b为奇数:ab%c=((a2)b/2*a)%c,记k=a2%c,那就是求(kb/2%...就是a以b的这个二进制位为幂的值,比如到了10010的从右到左第二个位置时,k=a(10)2=a2,到了第五个位置时,k=a(10000)2=a16 所以每次k=k*k%c,k的变化是:k=a(1
矩阵快速幂 1....分解来看,是由矩阵乘法,和快速幂组成 矩阵乘法 for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) for(int k=1;k<=n;k++) c[i...][j]+=a[i][k]*b[k][j]; 快速幂 ll pow_ksm(ll a,ll n) { ll res = 1; while(n) { if(n&1) res
---- 之前了解的快速幂是针对一个数的,原来矩阵也有快速幂! 原题连接 :CSU - 1597 Description 薛XX的低IQ是个令人头疼的问题,他的队友深受其害。...Input 第一行包含一个整数T(T<=100),表示数据组数 每组数据只有一行,包含六个整数X,Y,A,B,P,N(1 ≤ X, Y ≤ 300,1 ≤ A, B ≤ 30, 1≤ P ≤ 300 ,
1.快速幂(快速模幂) ①求a^b: int pow(int a, int k) { int ans = 1; while(k) { if(k &1) ans...a = (long long)a*a%mod; k >>=1; //比除法快多了 } return ans; } 例题:BZOJ1008 2.快速乘法
矩阵快速幂大概是用来解决这样一类问题,当你知道了一个递推式比如a[n]=a[n-1]+a[n-2] 题目要求你求出a[n]。如果n大于1亿怎么办? 不可能用for。...解决办法就是根据递推式构造一个矩阵A,最终会化简为a[n]=A^n类似的形式,再利用快速幂,快速的求出A^n,所以原先的 O(n)就变成了O(logn) 例如POJ 3233 递推关系是 s[k]=s...所以s[K]=( | 1 0| ^n )*s[1] | 1 A| 下面给出矩阵快速幂的模板 矩阵连乘: struct Node { int...(c.a[i][k]+=(a.a[i][j]*b.a[j][k])%mod)%=mod; } } } return c; } 矩阵快速幂
typedef long long ll; ll pow_mod(ll a, ll n) { ll res = 1; while(n) { i...
领取专属 10元无门槛券
手把手带您无忧上云