我们在前面讲过的《克里姆算法》是以某个顶点为起点,逐步找各顶点上最小权值的边来构建最小生成树的。同样的思路,我们也可以直接就以边为目标去构建,因为权值为边上,直接找最小权值的边来构建生成树也是很自然的
在一给定的无向图 G = ( V , E ) G = (V, E) G=(V,E) 中, ( u , v ) (u, v) (u,v)代表连接顶点 u u u 与顶点 v v v 的边,而 w ( u , v ) w(u, v) w(u,v) 代表此边的权重,若存在 T T T 为 E E E 的子集且为无循环图,使得 w ( T ) w(T) w(T) 最小,则此 T T T 为 G G G 的最小生成树,因为 T T T是由图 G G G产生的。
我们在图的定义中说过,带有权值的图就是网结构。一个连通图的生成树是一个极小的连通子图,它含有图中全部的顶点,但只有足以构成一棵树的n-1条边。所谓的最小成本,就是n个顶点,用n-1条边把一个连通图连接起来,并且使得权值的和最小。综合以上两个概念,我们可以得出:构造连通网的最小代价生成树,即最小生成树(Minimum Cost Spanning Tree)。 找连通图的最小生成树,经典的有两种算法,普里姆算法和克鲁斯卡尔算法,这里介绍普里姆算法。 为了能够讲明白这个算法,我们先构造网图的邻接矩阵,如图7-6
图的“多对多”特性使得图在结构设计和算法实现上较为困难,这时就需要根据具体应用将图转换为不同的树来简化问题的求解。
最小生成树:一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边。根据定义可知对于一个有V个顶点的图来说,其最小生成树定包含V个顶点与V-1条边。反过来如果一个图的最小生成树存在,那么图一定是连通图。 对于最小生成树算法最著名的有两种:Prim算法与Kruskal算法。
一个点包含自己的值、入度、出度、直接相邻的点(由自己出发的点)、相连的边(由自己出发的点)
首先构造一个只含n个顶点的森林,然后依权值从小到大从连通网中选择边加入到森林中,并使森林不产生回路,直至森林变成过一棵树为止
在连通网中查找最小生成树的常用方法有两个,分别称为普里姆算法和克鲁斯卡尔算法。本节,我们给您讲解克鲁斯卡尔算法。
前言 在数据结构与算法的图论中,(生成)最小生成树算法是一种常用并且和生活贴切比较近的一种算法。但是可能很多人对概念不是很清楚,什么是最小生成树? 一个有 n 个结点的连通图的生成树是原图的极小连通子
通俗易懂的讲就是最小生成树包含原图的所有节点而只用最少的边和最小的权值距离。因为n个节点最少需要n-1个边联通,而距离就需要采取某种策略选择恰当的边。
一个连通图的生成树指的是,极小的连通子图,它含有图中的全部n个顶点,但是只足以构成一棵树的(n-1)条边。
某一天过去SY那儿,突发奇想说要写一个统计代码行数的小程序。说干就干,约定了一个时间——周六,来把这个想法给实现了。当然这个项目人家做过的也未必,google一下,果然有非常优秀的win下面的代码统计工具sourceCounter。当然我们是用python来写,确定了数据结构和算法之后,我们就开始实现了。
Prim 算法可以称为“加点法”,每次迭代选择代价最小的边对应的点,加入到最小生成树中,算法从某一个顶点开始,逐渐长大覆盖整个连通网的所有顶点。
一个有向图(或有向图)是一组顶点和一组有向边,每条边连接一个有序对的顶点。我们说一条有向边从该对中的第一个顶点指向该对中的第二个顶点。对于 V 个顶点的图,我们使用名称 0 到 V-1 来表示顶点。
有7个村庄(A, B, C, D, E, F, G) ,现在需要修路把7个村庄连通,各个村庄之间的距离如下。问如何修路,能使各个村庄连通且修路的总里程数最小?
连通图中的每一棵生成树,都是原图的一个极大无环子图,即:从其中删去任何一条边,生成树就不在连通;反之,在其中引入任何一条新边,都会形成一条回路。
二叉树(BinaryTree)的定义,构造树的测试用例生成,先序遍历、中序遍历和后序遍历。
在上一篇博客判断有向图是否有圈中从递归的角度简单感性的介绍了如何修改深度优先搜索来判断一个有向图是否有圈。事实上, 它的实质是利用了深度优先生成树(depth-first spanning tree)的性质。那么什么是深度优先生成树?顾名思义,这颗树由深度优先搜索而生成的,由于无向图与有向图的深度优先生成树有差别,下面将分别介绍。 一. 无向图的深度优先生成树 无向图的深度优先生成树的生成步骤: 深度优先搜索第一个被访问的顶点为该树的根结点。 对于顶点v,其相邻的边w如果未被访问,则边(v, w)为该树的树
给定一个带权的无向连通图,能够连通该图的全部顶点且不产生回路的子图即为该图的生成树;
又要画图了。一到这里就莫名其妙的烦,之前写过的图相关博客已经让我都删了,讲的语无伦次。 希望这篇能写好点。
快要一整个月没有更新博客了,之前的几周每周都想着要写,但是最后时间还是排不开,最近的状态是一直在写代码,一直在怼工作的需求,顺便刷刷算法题,国庆则是没心没肺的玩了七八天,时间这么一分摊,写博客的时间总是挤不出来,罪过罪过。
几年前,当我为女儿们朗读《爱心树》的儿童绘本时,我发现原书名"The Giving Tree" 并未被根据字面意思而直译出来,译者调整了词汇并为作者代言,以此表达"爱就是给与"。
克鲁斯卡尔算法其实也是生成最小生成树的一种算法,和普里姆算法一样,解决同一类问题的。
Pseudoforest Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Total Submission(s): 1844 Accepted Submission(s): 704 Problem Description In graph theory, a pseudoforest is an undirected graph in which every connecte
拿到题目,先看看UnionFind 和 PriorityQueue 怎么实现吧,谁让上课没好好听呢。
在我的上一篇文章最小生成树算法(上)——Prim(普里姆)算法 主要讲解对于稠密图较为合适的Prim算法。那么在接下里这片文章中我主要讲解对于稀疏图较为合适的Kruskal算法。
一个连通的生成树是图中的极小连通子图,它包括图中的所有顶点,并且只含尽可能少的边。这意味着对于生成树来说,若砍去它的一条边,就会使生成树变成非连通图;若给它添加一条边,就会形成图中的一条回路。
POJ 1797 Heavy Transportation(最大生成树-Prim) 最大生成树,方法模仿最小生成树,每次选最大边进行操作,即可。 HDU 5723 Abandoned country(最小生成树Kruskal+树形DP) 未解决等待树形DP,再回头来看这个题目。 HDU 5624 KK's Reconstruction(最小生成树-Kruskal) 这个题是让所求最小生成树的最大值与最小值相差最小,对于一棵最小生成树,当他的最小值确定后,他的最大值也就确定
图论是研究图的数学理论和方法,其中图是由顶点集合及连接这些顶点的边集合组成的数学结构。图论在计算机科学、网络规划、生物信息学等众多领域都有重要应用。最小生成树(Minimum Spanning Tree,MST)是图论中一个经典问题,指在一个加权连通图中寻找一棵权值最小的生成树。克鲁斯卡尔(Kruskal)算法和普利姆(Prim)算法是解决最小生成树问题的两种著名算法。
在图论中,最小生成树是一个重要的概念,它是一个连通图的子图,包含图中的所有节点,并且边的权重之和最小。 Prim 算法和 Kruskal 算法是两种常用的最小生成树算法。本篇博客将重点介绍这两种算法的原理、应用场景以及使用 Python 实现,并通过实例演示每一行代码的运行过程。
堆(Heap)是一种特殊的树状数据结构,通常用于实现优先队列。堆有两种主要类型:最大堆和最小堆。最大堆是一棵树,其中每个父节点的值都大于或等于其子节点的值,而最小堆是一棵树,其中每个父节点的值都小于或等于其子节点的值。堆的主要特点是根节点具有最大或最小值,这使得堆非常适合处理具有优先级的数据。 优先队列(Priority Queue)是一种抽象数据类型,通常基于堆实现。它允许在插入元素时指定优先级,并在删除元素时始终返回具有最高(或最低)优先级的元素。这使得优先队列适用于需要按优先级处理元素的应用,如任务调度、图算法(如Dijkstra算法)、模拟系统等。 以下是关于堆和优先队列的关键点:
若图中顶点数为n,则它的生成树含有n-1条边。对生成树而言,若砍去它的一条边,则会变成非连通图,若加上一条边则会形成一个回路。
HDU 4081 Qin Shi Huang's National Road System(次小生成树-Kruskal) 博主的方法很好,但是有疑问,为什么不能将最多人口的两城市的距离设置为0,在进行Prim操作,求B呢?这个将在后续的刷题中体现。 POJ 2377 Bad Cowtractors(最大生成树-Kruskal) 裸题,可以用来熟悉算法。 HDU 6141 I am your Father!(最小树形图) 朱刘算法,这个还不会,稍后来填坑。 CodeForces 609 E.Minimu
生成树指在无向图中找一棵包含图中的所有节点的树,此树是含有图中所有顶点的无环连通子图。对所有生成树边上的权重求和,权重和最小的树为最小生成树,次小的为次最小生成树。
在上一篇文章中,我们看了一下图的遍历算法,主要是对图的深度优先遍历和图的广度优先遍历算法思想的介绍。接下来让我们来看一下图的最小声成树算法。
最小生成树算法用于在一个连通加权无向图中找到一个生成树,使得生成树的所有边的权重之和最小。最小生成树问题在许多实际应用中都有重要的作用,例如网络设计、电力传输等。
在计算机网络中,VLAN(Virtual Local Area Network,虚拟局域网)是一种将局域网划分为多个逻辑上独立的子网的技术,它可以帮助网络管理员更好地管理网络资源。
在计算机网络中,网络拓扑的稳定性和可靠性是非常重要的。为了解决网络中的环路和冗余路径带来的问题,产生了一系列的网络协议,其中包括STP、RSTP和MSTP。本文将介绍这三种协议的基本概念、工作原理和应用场景。
虽然放在一起,但是他们两个除了都是树之外没有一点关系。 最短路径生成树,就是ROOT根节点到达任意点距离最短的路径所构成的树,就是最短路径生成树。我画两个图给大家理解。
上篇博客我们聊了图的物理存储结构邻接矩阵和邻接链表,然后在此基础上给出了图的深度优先搜索和广度优先搜索。本篇博客就在上一篇博客的基础上进行延伸,也是关于图的。今天博客中主要介绍两种算法,都是关于最小生成树的,一种是Prim算法,另一个是Kruskal算法。这两种算法是很经典的,也是图中比较重要的算法了。 今天博客会先聊一聊Prim算法是如何生成最小生成树的,然后给出具体步骤的示例图,最后给出具体的代码实现,并进行测试。当然Kruskal算法也是会给出具体的示例图,然后给出具体的代码和测试用例。当然本篇博客中
No.17期 最小生成树(一) Mr. 王:我们再来讲一个时间亚线性算法——最小生成树问题。这里先简单介绍一下树的概念。 小可:那什么是树呢? Mr. 王:树的简单定义,就是一个没有回路的连通无向图。
前言 A wise man changes his mind,a fool never. Name:Willam Time:2017/3/1
生成树协议是一种二层管理协议,它通过选择性地阻塞网络中的冗余链路来消除二层环路,同时还具备链路备份的功能。
在Web应用程序开发领域,基于Ajax技术的JavaScript树形组件已经被广泛使用,它用来在Html页面上展现具有层次结构的数据项。目前市场上常见的JavaScript框架及组件库中均包含自己的树形组件,例如jQuery、Ext JS等,还有一些独立的树形组件,例如dhtmlxTree等,这些树形组件完美的解决了层次数据的展示问题。展示离不开数据,树形组件主要利用Ajax技术从服务器端获取数据源,数据源的格式主要包括JSON、XML等,而这些层次数据一般都存储在数据库中。“无限级树形结构”,顾名思义,没有级别的限制,它的数据通常来自数据库中的无限级层次数据,这种数据的存储表通常包括id和parentId这两个字段,以此来表示数据之间的层次关系。现在问题来了,既然树形组件的数据源采用JSON或XML等格式的字符串来组织层次数据,而层次数据又存储在数据库的表中,那么如何建立起树形组件与层次数据之间的关系,换句话说,如何将数据库中的层次数据转换成对应的层次结构的JSON或XML格式的字符串,返回给客户端的JavaScript树形组件?这就是我们要解决的关键技术问题。本文将以目前市场上比较知名的Ext JS框架为例,讲述实现无限级树形结构的方法,该方法同样适用于其它类似的JavaScript树形组件。
练习题: LeetCode 1135. 最低成本联通所有城市(最小生成树+排序+并查集) LeetCode 1489. 找到最小生成树里的关键边和伪关键边(并查集+kruskal最小生成树)
问题描述 n个村庄间架设通信线路,每个村庄间的距离不同,如何架设最节省开销? 这个问题中,村庄可以抽象成节点,村庄之间的距离抽象成带权值的边,要求最节约的架设方案其实就是求如何使用最少的边、最小的权值和将图中所有的节点连接起来。 这就是一个最小代价生成树的问题,可以用Prim算法或kruskal算法解决。 PS1:无向连通图的生成树是一个极小连通子图。 PS2:生成树是图的一个子图,包括所有的顶点和最少的边(n-1条边)。 PS3:最小代价生成树就是所有生成树中权值之和最小的那个。 算法思路 算
1. 二分查找(非递归) 代码实现 public class BinarySearchNoRecursion { public static void main(String[] args) { int[] arr = {1, 23, 46, 413, 880, 999}; int index = binarySearch(arr, 999); System.out.println(index); } /** * 二分查找
图论中知名度比较高的算法应该就是 Dijkstra 最短路径算法,环检测和拓扑排序,二分图判定算法 以及今天要讲的最小生成树(Minimum Spanning Tree)算法了。
最近在阅读 USB4 的标准,文档中多次提到 Spanning Tree,于是网上搜了搜,大概有了些概念,写下来促进理解。
领取专属 10元无门槛券
手把手带您无忧上云