在我写的这本书,《基于股票大数据分析的Python入门实战(视频教学版)》里,用能吸引人的股票案例,带领大家入门Python的语法,数据分析和机器学习。
在本文里,将给出若干精彩范例,包括用爬虫获取股市数据,用matplotlib可视化控件绘制K线和均线,以及用sklean库里的方法,通过机器学习预测股价的走势。
我去年出了一本Python书,基于股票大数据分析的Python入门实战,在这本书里,我是用股票范例讲述Pythorn的爬虫,数据分析和机器学习知识点,如下是京东的连接。
以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略,极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策。
之前在一篇文章中提到Matplotlib可视化,甚至可以用来画股票K线图,许多同学也在问代码,这次来发个文回应下。
我最近出了一本书,《基于股票大数据分析的Python入门实战 视频教学版》,京东链接:https://item.jd.com/69241653952.html,在其中给出了MACD,KDJ等指标图的绘制方法。此外,还可以用价格通道来分析。根据指定股票通道指标的算法,能用过去一定时间段的交易数据绘制出上下两条通道线,即价格通道里的上下轨道。一般来说,当股价向上突破上轨时,即预测后市将涨,反之当股价向下突破下轨时,即预测后市将跌。
使用Python绘制一幅专业的K线图,是量化投资和金融数据分析的必备功课。下面我将从K线图简介、数据获取、K线图绘制及成交量绘制等方面,结合源代码,一步步实现专业K线图的绘制。
股市图表是投资者和交易者分析市场走势的重要工具之一。matplotlib是一个强大的Python绘图库,而mplfinance则是matplotlib的一个扩展库,专注于股市和金融图表的绘制。本文将深入介绍mplfinance的使用方法,帮助读者更好地利用这个工具进行股市数据的可视化分析。
2021年牛年年后,A股行情跌跌不休,不少“九零后”跌成了“韭零后”。本想靠着基金翻身农奴把歌唱,没成想直接从贫下中农跌成了佃农。
你是一个Python编程专家,要完成一个编写Python脚本的任务,具体步骤如下:
在用python的matplotlib和numpy库绘制股票K线均线的整合效果(含从网络接口爬取数据和验证交易策略代码)一文里,我讲述了通过爬虫接口得到股票数据并绘制出K线均线图形的方式,在本文里,将在此基础上再引入成交量效果图,并结合量价理论,给出并验证一些交易策略。
本文中记录一次利用pyecharts绘制K线图。最近从朋友那边获取到一组关于stock的数据,于是抽空画了一下K线图,熟悉pyecharts中K线图的画法
上一篇《用Python绘制专业的K线图》,讲解了数据获取、K线图绘制及成交量绘制等内容。本篇将在上一篇的基础上,继续讲解移动均线的绘制。
从数学角度来分析,MACD指标是根据均线的构造原理,对股票收盘价进行平滑处理,计算出算术平均值以后再进行二次计算,它是属于趋向类指标。
这里我们可以直接使用tushare 、akshare等等金融数据接口,个人非常安利akshare!毕竟它不需要积分呀
本人最近在尝试着发表“以股票案例入门Python编程语言”系列的文章,在这些文章里,将用Python工具绘制各种股票指标,在讲述各股票指标的含义以及计算方式的同时,验证基于各种指标的交易策略,本文是第一篇,通过K线和均线案例讲述Numpy,Maplotlib等相关库的用法,并且还用代码案例来验证买卖的交易策略。在本系列的后面文章中,将陆续通过python绘制成交量、KDJ、MACD、RSI和OBV等指标,而且还会用Python编写针对这些指标的交易策略,敬请关注。
2022年梦幻开局,到现在4个月了,A股、美股都在大跌(沪深300到五一为止快跌了20个点了),买的基金、股票都亏惨了。于是最近开始学习“更科学”的投资理财方法,其中K线是分析基金、股票走势的一大利器。虽然目前各大理财APP上都有各个股票和指数的K线,但是当我们想看一些定制化的K线,例如以自己选择的定投日为周期的月线时,这些软件可能就支持不了了。比如,我一般在每个月的15号定投基金,希望看看以15号为周期的月线,但是各个APP上的月线都是以1号为周期的。
本文将使用Python来可视化股票数据,比如绘制K线图,并且探究各项指标的含义和关系,最后使用移动平均线方法初探投资策略。 数据导入 这里将股票数据存储在stockData.txt文本文件中,我们使用pandas.read_table()函数将文件数据读入成DataFrame格式。 其中参数usecols=range(15)限制只读取前15列数据,parse_dates=[0]表示将第一列数据解析成时间格式,index_col=0则将第一列数据指定为索引。 import pandas as pd i
摘要:本篇文章是"Python股市数据分析"两部曲中的第一部分,主要介绍金融数据分析的背景以及移动均线等方面的内容。 本篇文章是"Python股市数据分析"两部曲中的第一部分,内容基于我在犹他州立大学MATH 3900 (Data Mining)课程上的一次讲座。在这些文章中,我将介绍一些关于金融数据分析的基础知识,例如,使用pandas获取雅虎财经上的数据,股票数据可视化,移动均线,开发一种均线交叉策略,回溯检验以及基准测试。第二篇文章会介绍一些实践中可能出现的问题,而本篇文章着重讨论移动平均线。 注意:
本篇文章是”Python股市数据分析”两部曲中的第一部分,内容基于我在犹他州立大学MATH 3900 (Data Mining)课程上的一次讲座。在这些文章中,我将介绍一些关于金融数据分析的基础知识,例如,使用pandas获取雅虎财经上的数据,股票数据可视化,移动均线,开发一种均线交叉策略,回溯检验以及基准测试。第二篇文章会介绍一些实践中可能出现的问题,而本篇文章着重讨论移动平均线。 注意:本篇文章所涉及的看法、意见等一般性信息仅为作者个人观点。本文的任何内容都不应被视为金融投资方面的建议。此外,在此提供的
作者| 李鎔洲,UIUC大二学生,曾经参与微小卫星通信开发,为恒信资管开发期货数据视觉化系统,现在在尝试做校园全电动F1赛车的电子系统。 该项目是一个基于Tushare和Echarts的股票数据视觉化应用。支持绘制个股K线,高开低收,成交量,前/后复权,个股每日分笔。 项目地址: https://github.com/Seedarchangel/TuChart 截图 个股K线 个股分笔 多图并列 可拖拽/缩放 使用方法 命令行pip install tuchart 注意:为了保证
各类图表功能,小程序自带API并没有提供,所以很多人就用了其他方法来实现,极乐大叔将这些实现方法和教程聚合一下,以便大家能够迅速而方便的使用。 — 相关文章 — 在微信小程序中绘制图表(part
某天,我的一个朋友告诉我说,实现经济自由的关键是股票投资。虽然这是市场繁荣时期的真理,但如今业余交易股票仍然是一个有吸引力的选择。由于在线交易平台的便利性,涌现了许多自主价值投资者或家庭主妇交易员。甚至还有一些成功的故事和广告吹嘘有“快速致富计划”学习如何投资回报率高达 40% 甚至更高的股票。投资已成为当今职场人士的福音。
在本人的新书里,将通过股票案例讲述Python知识点,让大家在学习Python的同时还能掌握相关的股票知识,所谓一举两得。这里给出以线性回归算法预测股票的案例,以此讲述通过Python的sklearn库实现线性回归预测的技巧。
在多变量波动率预测中,我们有时会看到对少数主成分驱动的协方差矩阵建模,而不是完整的股票。使用这种因子波动率模型的优势是很多的。
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文是可视化神器Plotly绘图的第7篇,讲解的是如何通过Plotly来绘制与股市相关的图形,比如基础K线图、OHLC图等。
之前的几篇文章我们讲述了使用pyecharts绘制柱状图,地理信息图,饼图,双y轴图形的绘制,然后有朋友跟我说,最近沉迷股市,我这个框架能不能绘制K线图,他要从K线图中找规律,寻找逆风翻盘的机会,我跟他说,可以,安排,这篇文章我们就介绍一下使用pyecharts绘制K线图。
本人之前写过若干“给程序员加财商”的系列文,目的是通过股票案例讲述Python知识点,让大家在学习Python的同时还能掌握相关的股票知识,所谓一举两得。
大数据文摘作品 编译:大山、笪洁琼、Yawei Xia 对于K线图,相信做交易的朋友都不陌生。本文作者用简单明了的语言解释了三日K线的交易原则,也分享了如何用python绘制K线图的方法和代码。 关于日本K线交易 据说日本人在十七世纪就已经运用技术分析的方法进行大米交易,一位名叫本间宗久的坂田大米贸易商发明了“蜡烛图”这一技术来分析每日市场上大米现货价格。现代K线图之父史蒂夫尼森认为,通过“蜡烛图”进行正式交易是自19世纪50年代开始的。 在本文,我们要重点解决以下两个问题: 1、使用Python绘制K线图
各位朋友大家好,小之今天又来给大家带来一些干货了。上篇文章机器学习股票价格预测初级实战是我在刚接触量化交易那会,因为苦于找不到数据源,所以找的一个第三方平台来获取股票数据。
SVM是Support Vector Machine的缩写,中文叫支持向量机,通过它可以对样本数据进行分类。以股票为例,SVM能根据若干特征样本数据,把待预测的目标结果划分成“涨”和”跌”两种,从而实现预测股票涨跌的效果。
但如果使用 matplotlib 从 0 开始绘制,一步一步添加日线、均线、MACD、成交量等指标时,则会显得十分麻烦,且代码很难复用。
但是一个量化交易可以通过回测系统建立信心然后让其一如既往的运行,以达到让钱生钱的目的,并且是自动的。
最近在看这本书,感觉很不错,理论,算法,实践兼顾,我只放出我感兴趣的部分章节的笔记,本章分会分步更新,关于数据导入和数据预处理就不写了,直接开始目标描述和定义预测任务。本书中英文版的都有,我共享到文章结尾处,有需要的同学可以去下载。
统计、机器学习这种东西,用来做别的有点不好玩,但是用来玩股票真的可以吗?
以前,我不懂。写的技术就是技术内容,写的场景就是场景分析,但从读者的阅读我发现,大家更喜欢的是技术与场景结合,尤其是用技术结合那些羞羞答答的场景,虽然嘴上都不说。
今天 Lemon 来详细的分享下,这类图如何绘制,一共会讲解 3 类图形,分别是 面积曲线图、蜡烛图、OHLC图。这三种类型的图在投资中会经常遇到。
我们可以看到上图的动图是一组组合动画,共有四部分组成:坐标横竖虚线的动画、曲线的动态绘制、小圆点的动画、渐变区域的动画。下面逐个分析
关于投资的几个类别,一般我们将天使、VC、PE三个部分统称为私募(Private Equity),指的是没有在证券交易所公开上市交易的资产。
社区里有一群canvas爱好者,比jsh5css,安静的小智,jeffer等同学他们在canvas方面都有着自己的学习心得和见解。 但是极乐叔发现在小程序开发学习过程中还是有很多小伙伴折戟在canvas上,为此我们在社区首页教程内专门开了一个canvas学习栏目,但是觉得仍然不够,canvas在全网的知识还是太少,所以今天集中一下全网的资料,方便以后遇到问题的同学,能够从中找到可能的参考。 假如本文中有错误或者需要补充的部分,欢迎给同学提出或补充!你也可以在后台投稿发表自己canvas方面的心得或demo
前两天看到一篇论文《基于EMV指标的量化交易策略在我国A股市场的研究》,想想看我们学习talib中居然没有这个指标,至少目前还没碰见。作者通过EMV指标实现了年化20%的收益。对于一个本着学习目的的我来说,学一学EMV指标确实挺好。想想看要是自己也能开发这样一套系统的话,想想都觉得美滋滋。但毕竟咋不是专业的,野路子就要咋不断的动手了,希望黄天不负有心人吧!
时间序列数据在许多领域中都是常见的,包括金融、气象、股票市场等。通过可视化这些时间序列数据,我们可以更直观地理解数据的趋势、周期性和异常情况。Python提供了许多强大的可视化库,如Matplotlib、Seaborn和Plotly,可以帮助我们创建漂亮的时间序列图表。本文将介绍如何使用这些库来可视化时间序列数据。
Echarts 是一个由百度开源的数据可视化工具,凭借着良好的交互性,精巧的图表设计,得到了众多开发者的认可,而 Python 就不用多说了。
最近我们被客户要求撰写关于线性回归预测股票价格的研究报告,包括一些图形和统计输出。
在分析一个事件走势的时候,一般我们会获取到这个事件系列的数据。但是,在绘制出相关的曲线的之后,我们会发现曲线的上下振动比较频繁,那是因为一些短期内的杂数据引起的。比如:
要预测股票趋势,通常需要历史的各类交易价格数据来进行模型的搭建。“历史惊人的相似”是股票趋势判断问题的重要假设。通常我们的思维是,股票某一天的交易价格受到该交易日前面的许多交易日的影响,而股价的确定则是由买卖市场双方共同决定的。当我们收盘股票数据集时,应该将多个开盘日归入参考范畴。本文将前 N 个交易日作为一个时间窗口,并设为训练集,将第 N+1 个交易日作为测试集,预测测第 N+2 个交易日的股票趋势情况。通过滑动窗口的方法,设每次滑动窗口移动的距离为 1(即 1 天),则在初始 T 个交易日上能够构造多个训练集和测试集,且训练样本的数据始终等于 N。
K线图是金融领域常用的技术分析工具,可以洞察地展示股票的开盘价、收盘价、最高价和最低价等信息。在投资决策中,对多个股票的走势进行对比分析是非常重要的。随着金融市场的发展,投资者对于多种股票的对比分析需求越来越高。传统的方式是通过查看多种股票的历史数据并手动对比图表,但这种方式效率低下很容易出错。
领取专属 10元无门槛券
手把手带您无忧上云