首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【AAAI2018】预测你的下一步-动态网络节点表示学习,浙江大学和南加州大学团队工作,代码已开源

    【导读】以往的网络表示学习模型只会为固定的网络节点学习表示向量,而实际上,网络节点会根据时间的变化通过节点间的交互呈现出不同的网络结构特性。浙江大学和南加州大学团队提出了基于动态网络的节点表示的概念,利用DynamicTriad,在可以保存网络的结构信息的同时又保存网络的演化模式。该模型在链接预测上取得了不错的效果,而且方法未来可以有效地应用于识别移动网络中的电话欺诈,并预测网络中的用户是否偿还贷款。论文已经放出,代码也已开源。 论文:Dynamic Network Embedding by Modelin

    08

    双机流水作业调度问题——Johnson算法

    流水作业是并行处理技术领域的一项关键技术,它是以专业化为基础,将不同处理对象的同一施工工序交给专业处理部件执行,各处理部件在统一计划安排下,依次在各个作业面上完成指定的操作。 流水作业调度问题是一个非常重要的问题,其直接关系到计算机处理器的工作效率。然而由于牵扯到数据相关、资源相关、控制相关等许多问题,最优流水作业调度问题处理起来非常复杂。已经证明,当机器数(或称工序数)大于等于3时, 流水作业调度问题是一个NP-hard问题(e.g分布式任务调度)。粗糙地说,即该问题至少在目前基本上没有可能找到多项式时间的算法。只有当机器数为2时,该问题可有多项式时间的算法(机器数为1时该问题是平凡的)。

    03
    领券