首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    知识总结:模型评估与选择检验误差与过拟合模型的选择错误率精度查全率、查准率、F1 对于二分问题

    检验误差与过拟合 1、错误率:分类错误的样本数a占总样本数m的比例  E=a/m 2、精度:1-E=1-(a/m) 误差:学习器预测输出与样本的真实输出之间的差异叫“误差”。 学习出来的学习器在训练集上的误差叫‘“训练误差”。 在新样本上的误差叫“泛化误差”。 过拟合:学习能力过于强大,学习到不是一般特征的特征。 欠拟合:通常由于学习能力过于弱导致。 模型的选择 1、理想方案: 对候选模型的泛化误差进行评估,选择泛化误差最小的模型。 通常泛化误差无法直接获得,而训练误差又存在过拟合现象。 2、评估方法 需要

    09

    (数据科学学习手札27)sklearn数据集分割方法汇总

    一、简介   在现实的机器学习任务中,我们往往是利用搜集到的尽可能多的样本集来输入算法进行训练,以尽可能高的精度为目标,但这里便出现一个问题,一是很多情况下我们不能说搜集到的样本集就能代表真实的全体,其分布也不一定就与真实的全体相同,但是有一点很明确,样本集数量越大则其接近真实全体的可能性也就越大;二是很多算法容易发生过拟合(overfitting),即其过度学习到训练集中一些比较特别的情况,使得其误认为训练集之外的其他集合也适用于这些规则,这使得我们训练好的算法在输入训练数据进行验证时结果非常好,但在训练

    07

    周志华《机器学习》第2章部分笔记

    ①误差(error):学习器的预测输出与样本的真实输出之间的差异 ②训练误差(training error)或经验误差(empirical error):在训练集上的误差 ③测试误差(test error):在测试集上的误差 ④泛化误差(generalization error):学习器在所有新样本上的误差 ⑤过拟合(overfitting):学习能力过于强大,把训练样本自身的一些特点当成所有潜在样本都会有的一般性质,导致泛化能力下降 ⑥欠拟合(underfitting):学习能力太差,对训练样本的一般性质尚未学好 在过拟合问题中,训练误差很小,但测试误差很大;在欠拟合问题中,训练误差和测试误差都比较大。目前,欠拟合问题容易克服,如在决策树中扩展分支,在神经网络中增加训练轮数;但过拟合问题是机器学习面临的关键障碍。 ⑦模型选择:在理想状态下,选择泛化误差最小的学习器。

    03

    评分卡模型开发-定量指标筛选

    本文介绍了在模型开发中,如何从数据中筛选出对违约状态影响最显著的指标。首先介绍了违约状态的数据特点,然后给出了五种定量指标筛选方法,包括随机森林法、计算变量间的相对重要性、基于自变量的逐步回归法、基于自变量的广义交叉验证法和基于变量的“Boruta”法。最后,综合这五种方法,筛选出了对违约状态影响最显著的四个入模指标,分别为:账户状态、是否逾期、是否申请提高额度和申请额度是否获批。对于定性指标,则通过文本挖掘的方法提取了“是否逾期”和“是否申请提高额度”两个入模指标。通过这些指标,可以更好地预测客户的违约状态,为金融机构提供更精准的风险评估和决策依据。同时,在筛选指标的过程中,要注意指标的可解释性和稳定性,以确保模型的预测效果和泛化能力。

    06

    机器学习测试笔记(10)——K邻近算法

    我们谈起机器学习经常会听到监督学习和非监督学习,它们的区别在哪里呢?监督学习是有标签的,而非监督学习是没有标签的。比如有一批酒,我们知道里面包括红酒和白酒,算法f可以用于鉴别某一个酒是否为红酒和白酒,这时候算法f就称作为监督学习,红酒、白酒即为标签。如果现在另有一批酒,我们知道里面包括不同品种的酒,但是不知道有几类,算法g可以把相同类别的酒归为一类,不同类别的酒归为不同的类(比如:红酒、白酒、啤酒、米酒…), 算法g就称作为非监督学习。在监督学习中我们称作“分类”,在非监督学习中我们称作“聚类”。本文提到的K邻近算法属于监督学习内的“分类”算法。

    01
    领券