首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    利用pandas进行数据分析(三):缺失值处理

    在实际的数据处理过程中,数据缺失是一种再平常不过的现象了。缺失值的存在极大的影响了我们数据分析结果的可靠性,以至于在数据建模前我们必须对缺失值进行处理。实际的缺失值处理主要包括两个部分:即识别数据集中的缺失值和如何处理缺失。 相较于,在数据缺失处理方面提供了大量的函数和包,但未免有些冗余。而中的缺失处理则显得高效精炼。在中,不必去计较你的数据集中的缺失到底是随机缺失还是非随机缺失,你只需要用函数将缺失识别出来然后视数据集大小决定是删除还是插补就可以了。 缺失值的识别 作为最初的设计目标之一,尽可能简单的处理

    010

    Nat. Mach. Intell. | 多模态补全和特征的联合变分自编码器

    今天为大家介绍的是来自威斯康星大学麦迪逊分校团队的一篇关于单细胞多模态的论文。单细胞多模态数据能够测量细胞的各种特征,从而深入了解细胞和分子机制。然而,多模态数据的生成仍然昂贵且具有挑战性,同时缺失模态也经常发生。最近,机器学习方法已经被开发用于数据补全,但通常需要完全匹配的多模态数据才能学习共同的潜在特征,可能缺乏模态特异性。为了解决这些问题,作者开发了一个机器学习模型,名为JAMIE。JAMIE接受单细胞多模态数据,这些数据可以在模态之间部分匹配样本。变分自编码器学习每个模态的潜在特征。然后,跨模态匹配样本的特征被聚合以识别联合的跨模态潜在特征,然后进行重构。为了进行跨模态补全,可以使用一个模态的潜在特征和另一个模态的解码器。为了提高解释性,作者使用Shapley值来确定跨模态补全和已知样本标签的输入特征的优先级。

    02

    扫码

    添加站长 进交流群

    领取专属 10元无门槛券

    手把手带您无忧上云

    扫码加入开发者社群

    相关资讯

    热门标签

    活动推荐

      运营活动

      活动名称
      广告关闭
      领券