浮点数精度问题是指在计算机中使用二进制表示浮点数时,由于二进制无法精确表示某些十进制小数,导致计算结果可能存在舍入误差或不精确的情况。
之前自己答的不是满意(对 陈嘉栋的回答 还是满意的),想对这个问题做个深入浅出的总结
例如在 chrome js console 中: alert(0.7+0.1); //输出0.7999999999999999 之前自己答的不是满意(对 陈嘉栋的回答 还是满意的),想对这个问题做个深入浅出的总结
http://cenalulu.github.io/linux/about-denormalized-float-number/
由于接触JS不久,关于JS的浮点数的计算更是之前没有用过,这次写JS项目发现的这个问题:0.1+0.2=0.3000000000004,为什么会出现这么奇怪的问题呢 ?在网上找了一些资料,JS作为解释性语言,直接计算会有浮点数精度丢失问题。 门弱类型语言的JavaScript ,从设计思想上就没有对浮点数有个严格的数据类型。
在很多编程语言中,我们都会发现一个奇怪的现象,就是计算 0.1 + 0.2,它得到的结果并不是 0.3,比如 C、C++、JavaScript 、Python、Java、Ruby 等,都会有这个问题。
这篇是精度问题的最后一篇,要是想看前面的,请看微信历史记录。 做前端的都感觉JS这语言巨坑无比,兼容性让你摸不到头脑,甚至还会让你脱发。一些初学者遇到: 0.1 + 0.2 = 0.30000000000000004 都会觉得这JS太TM坑了,一个小数计算都不会。可是我想说,这"锅"JS不背!其实和JS采用的数值存储 IEEE754 规范有关,所有采用此规范的语言都会有此问题并不是JS的"锅"。 IEEE754 IEEE浮点数算术标准(IEEE 754)是最广泛使用的浮点数运算标准,为许多CPU与浮点运算器
去互联网金融或电商行业的公司面试时,一般都会遇类似“ 0.1+0.2 等于 0.3吗?”这道题,对于非科班出身的前端人是一道送命题,有些知道 0.1+0.2 不等于 0.3,但是继续深问为什么,就无法很清晰地回答。
今天和同事聊起计算机中精度的话题。于是想起一个小巧的,快速的JavaScript库:big.js。它可用于任意精度的十进制算术运算。这里分享给大家
原文地址:http://eux.baidu.com/blog/fe/关于js中的浮点运算
在最近业务开发中, 作者偶遇到了一个与 JavaScript 浮点数相关的 Bug。
Java语言提供了八种基本类型。六种数字类型(四个整数型,两个浮点型),一种字符类型,还有一种布尔型。
“0.1 + 0.2 = ?” 这个问题,你要是问小学生,他也许会立马告诉你 0.3。但是在计算机的世界里就没有这么简单了,做为一名程序开发者在你面试时如果有人这样问你,小心陷阱喽! 你可能在哪里见过
链接 | https://zhuanlan.zhihu.com/p/30703042
所有使用 IEEE 754 标准的编程语言,都存在浮点数运算的精度问题,不论是 C/C++、Java、Ruby,还是 Go、Python,当然 JavaScript/Node.js 也是如此。
前言 前段时间, 在群里跟 Peter 说到JS的浮点数问题。 他问我, 为什么 0.1 + 0.2 !== 0.3, 而 0.05 + 0.25 === 0.3 ? 当时也大概解释了下是精度丢失,
简单加法在js算出结果居然不是准确的0.9,而是0.8999999999999999,why?
📚 文档目录 合集-数的二进制表示-定点运算-BCD 码-浮点数四则运算-内置存储器-Cache-外存-纠错-RAID-内存管理-总线-指令集: 特征- 指令集:寻址方式和指令格式 浮点数的加减运算 X=X_S \times 2^{X_E},Y=Y_S \times 2^{Y_E} 步骤 检查是否为零 阶码对齐,尾数移位 对尾数加或减 标准化结果 溢出判断 对阶 求阶差\Delta E=\begin{cases} =0,已经对齐\\\ne0,\begin{cases}大的向小的对齐:减小较r大的阶码,同
在FPGA系统中有两个基本准则非常重要,分别为:数字表示法和代数运算的实现。本博文主要介绍数字表示。 参考文献:数字信号处理的FPGA实现(第3版)中文版 && 基于FPGA的数字信号处理 [高亚军 编著] 2015年版 可以购买相关书籍进行研读。
众所周知,JavaScript 浮点数运算时经常遇到会 0.000000001 和 0.999999999 这样奇怪的结果,如 0.1+0.2=0.30000000000000004、1-0.9=0.09999999999999998,很多人知道这是浮点数误差问题,但具体就说不清楚了。本文帮你理清这背后的原理以及解决方案,还会向你解释JS中的大数危机和四则运算中会遇到的坑。
这个其实是计算机底层二进制无法精确表示浮点数的一个 bug, 是跨域语言的, 比如 js 中的 舍入误差
其实这些结果都并非语言的 bug,但和语言的实现原理有关, js 所有数字统一为 Number, 包括整形实际上全都是双精度(double)类型。
0.30000000000000004问题是计算机科学领域的经典BUG, 由比尔盖茨那一代人标准化的浮点数表示法造福了一代人也祸害了一代人, 由此引出了不少的坑, 比如大多数编程语言中0.1+0.2==0.30000000000000004.遇到这个问题不要担心, 你的编译环境没有坏, 只是计算机在做进制转换的时候需要绕一些丸子, 本文来具体分析一下这个bug背后的秘密, 也可以访问它的官解: http://0.30000000000000004.com/
“言治骨角者,既切之而复磋之;治玉石者,既琢之而复磨之,治之已精,而益求其精也。”——宋·朱熹
1、在数学计算中,小数会有一定的误差,这是计算机本身的bug,不仅是js语言,其他语言也有这个问题。
JS中整数和浮点数统属于数字类型,在计算机中,所有的数字都是采用IEEE754标准的64位双精度浮点数形式存储,进而导致了无论是储存、计算中都会存在精度问题。其存储形式为: 1. 第一位是正负符号位,0: 正数 1: 负数
在看了 JavaScript 浮点数陷阱及解法(https://github.com/camsong/blog/issues/9) 和 探寻 JavaScript 精度问题(https://github.com/MuYunyun/blog/blob/master/BasicSkill/%E5%9F%BA%E7%A1%80%E7%AF%87/%E6%8E%A2%E5%AF%BBJavaScript%E7%B2%BE%E5%BA%A6%E9%97%AE%E9%A2%98.md) 后,发现没有具体详细的推导0.1+0.2=0.30000000000000004的过程,所以我写了此文补充下
浮点数精度丢失,一直是前端面试八股文里很常见的一个问题,今天我们就来深入的了解一下问题背后的原理,以及给一些日常处理的小技巧。
哈喽,大家好!相信有很多在传统软件行业的小伙伴,日常接触JS、Java、C#这类语言多一些,很少用到Python。但是Python确实很香(例如:AI、数学、绘图等),早晚会碰上它。对于我们这些懂编程但不懂Python的“老新手”来说,只有系统、全面地科普一下Python基础知识,才能更好、更高效地搬运的代码。下面是我整理的一些Python3笔记,分享给大家。
Javascript API GL是基于WebGL技术打造的3D版地图API,3D化的视野更为自由,交互更加流畅。提供丰富的功能接口,包括点、线、面绘制,自定义图层、个性化样式及绘图、测距工具等,使开发者更加容易的实现产品构思。充分发挥GPU的并行计算能力,同时结合WebWorker多线程技术,大幅度提升了大数据量的渲染性能。最高支持百万级点、线、面绘制,同时可以保持高帧率运行。
相信大家在平常的 JavaScript 开发中,都有遇到过浮点数运算精度误差的问题。
前段时间在开发的过程中遇到一个奇怪的 Bug。 在服务端数据正常,前端页面渲染代码正常的情况下,浏览器页面渲染出的内容却不一样。 经过一番定位,最终在 Chrome 浏览器的控制台找到了线索。 在控制台里面查看到的情形是 response 和 preview 的值不一样。
如果是GBK编码,则一个中文汉字占2个字节,英文占1个字节 如果是UTF8编码,则一个中文汉字占3个字节,而英文字母占1字节。 比如定义某个字段数据类型为:varchar(32),表示这个可以存储 32 个字符,此时表示的是字符,所以跟中英文无关,也就是该字段可以存储 32 个中文,或者是 32 个英文,或者是 32 个中文和英文的混搭都行。但如果字符数超过 32 个的话就会报错。
逛知乎的时候发现@DDDD转了一张图,这张图对js魔法的吐槽可谓非常到位。下面,我们就从这张图出发来详细讲讲js。
答:Javascript 中的数据类型包括原始类型和引用类型。其中原始类型包括 Null、Undefined、Boolean、Number、String、Symbol、BigInt。引用类型指的是 Object。
在计算机中数字无论是定点数还是浮点数都是以多位二进制的方式进行存储的。 在JS中数字采用的IEEE 754的双精度标准进行存储(存储一个数值所使用的二进制位数比较多,精度更准确)
C#浮点数问题示例: 解决方案是使用【decimal】 //双浮点数计算失精问题示例 double x = 300.2; double y = 300; Console.WriteLine("double计算"+(x - y)); //双浮点数计算失精问题解决示例 decimal d1 = decimal.Parse("300.2"); decimal d2 = decimal.Parse("300"); Console.WriteLine("decimal计算"+(d1 - d2)); 对比效果:
Brief 一天有个朋友问我“JS中计算0.7 * 180怎么会等于125.99999999998,坑也太多了吧!”那时我猜测是二进制表示数值时发生round-off error所导致,但并不清楚具体是如何导致,并且有什么方法去规避。于是用了3周时间静下心把这个问题搞懂,在学习的过程中还发现不仅0.7 * 180==125.99999999998,还有以下的坑 1. 著名的 0.1 + 0.2 === 0.30000000000000004
要从今天的微信支付调试说起,众所周知微信支付的接口,要求传入的金额数值是按分为单位的,所以都必须是大于0的整数。 所以我们一般业务的实际金额都要做乘以100的处理,例如某大妈刚在市场买了1.10元的菜,她摸了摸口袋,看了一眼诚实憨厚的大叔,已经麻利地帮她打包好菜,实在不忍心说出自己今天忘记带钱包。 大叔正打算把菜递给大妈之际,看到大妈尾头紧皱,已经失去平时要把1.10元的菜讲价到1.00元的风韵神采,便意识到事情并不简单,便默默从下方抽屉中抽出一个微信二维码递给她。 大妈心中暗喜,迅速拔出他儿子刚为她买的最新款红米手机,熟练地扫过二维码,也没有要讲价到1.00元的意思了,麻利地在微信上输入1.10元的金额,点击立即支付,输入过密码。。。 “参数错误:你输入的金额格式不正确”,看着手机弹出的提示弹窗,大妈狠狠咬了牙,又重复了一遍上述的支付动作,“参数错误:你输入的金额格式不正确”。这时大妈崩溃的用着恳求可怜的眼神看着大叔,大叔也一面无奈地轻轻将打包好的菜微微收了过来一下,空气突然安静地凝固起来。
简单回顾一下,简单来说,用定点数表示数字时,会约定小数点的位置固定不变,整数部分和小数部分分别转换为二进制,就是定点数的结果。
本文由腾讯云+社区自动同步,原文地址 http://blogtest.stackoverflow.club/article/represent_float_number/
Math是一个内置对象,它拥有一些数学常数属性和数学函数方法,Math用于Number类型,其不支持BigInt。
在 JavaScript 中浮点数运算时经常出现 0.1+0.2=0.30000000000000004 这样的问题,除了这个问题之外还有一个不容忽视的大数危机(大数处理丢失精度问题),也是近期遇到的一些问题,做下梳理同时理解下背后产生的原因和解决方案。
本关需要使用 Cheat Engine 工具对浮点数进行扫描,完成修改任务。浮点数是一种带有小数点的数值,通过“浮点数”扫描方式进行修改。本关中,健康值为单精度浮点数,弹药值为双精度浮点数,需要将这两项数值都修改为 5000 或更高。提示建议禁用“快速扫描”功能,以获取更准确的扫描结果。
在计算机系统中,浮点数是以一种称为浮点数表示法的形式来表示和存储的。浮点数表示法使用科学计数法的形式,将一个实数表示为一个值乘以一个基数的幂的形式。表示一个浮点数需要三个要素:符号位、尾数和指数。
浮点数是计算机编程中用于表示实数的一种数据类型,用于处理具有小数部分的数值。Go语言(Golang)提供了两种主要的浮点数类型:float32和float64,分别用于单精度和双精度浮点数的表示。本篇博客将深入探讨Go语言中的浮点类型,介绍浮点数的特点、精度、舍入规则以及在实际开发中的应用。
今天小浩为大家分享一篇关于浮点数的文章,深入浅出的讲解了浮点数的工作原理~实在是难得一见的好文。
其中NaN类型是js中唯一不等于自身的类型,当发生未定义的数学操作的时候,就会返回NaN,如:1 * 'asdf'、Number('asdf')。浮点数的运算可能会出现如0.1 + 0.2 !== 0.3的问题,这是由于浮点运算的精度的问题,一般采用toFixed(10)便可以解决此类问题。
领取专属 10元无门槛券
手把手带您无忧上云