⭐️ 本文首发自 前端修罗场,是一个由资深开发者独立运行的专业技术社区,我专注 Web 技术、答疑解惑、面试辅导以及职业发展。帮你评估知识点的掌握程度,获得更全面的学习指导意见,交个朋友,不走弯路,少吃亏! ---- 最近公司在研发分布式高性能的云计算平台,其中涉及到了 AI 方面的处理。所以我也在自学 Machine Learning。不过在 AI 方面的知识却是需要花功夫花时间学习的。在学习的过程中我发现了一个不错的学习教程(https://www.captainai.net/iislv/),推荐给大
Brain.js是一个Javascript库,用于替代(现在已弃用的)“ 脑 ”库的神经网络,该库可与Node.js一起使用或在浏览器中使用(注释计算),并为不同任务提供不同类型的网络。以下是训练网络以识别色彩对比的演示。
选自Medium 作者:Mark Feng 机器之心编译 参与:Jane W、蒋思源 本文利用 synaptic 库构建简单的神经网络,并在浏览器中实现训练过程。该神经网络可以和其他框架共同打造一款简单的推荐系统应用。这种在浏览器上训练的神经网络因为将计算任务分配到各个终端设备,所以服务器的压力大大降低。此外,在终端上训练的神经网络也大大保护了用户的隐私。机器之心对本文做了简要介绍,全部代码请查看 Github 项目地址。 项目地址:https://github.com/markselby9/ml-in-b
不过,一般的开发者应该都不会用神经网络来实现异或的功能吧,所以这里有一个更加实际的例子:训练一个神经网络来识别颜色对比 https://brain.js.org/
当我第一次和我们的 NLP 主要研究人员谈起这个概念时,她的原话是这样的。可能她是对的,但它也是一个非常有趣的概念,最近在 Javascript 领域得到了越来越多的关注。
今天要为大家推荐一套超酷炫的,用于构建神经网络 3D 可视化应用的框架——TensorSpace。
选自ITNEXT 作者:Daniel Simmons 机器之心编译 参与:程耀彤、李泽南 随着新技术和新工具的出现,构建神经网络已不再是一件需要大量机器学习相关知识的工作了。本文将会教你以 JavaScript 库 Brain.js 为基础,构建并训练自己的神经网络。 设定目标 (如果你只想直接上手,请跳过这部分......) 首先,本文作者还不是神经网络或机器学习方面的专家。坦率的说,我仍然对人工智能的大部分内容感到困惑。但希望这能够鼓励到正在读这篇文章,并急切想尝试机器学习的初学者们。 机器学习是近年来
选自blog.bitsrc.io 作者:Jonathan Saring 机器之心编译 参与:程耀彤、黄小天 本文作者在构建 Bit 的过程中探索和尝试了把 Javascript 和机器学习结合起来使用的可能性,并由此发现了一些简洁优雅的库,可以把 Javascript、机器学习、DNN 甚至 NLP 整合起来。 「等等,什么??这是一个可怕的想法!」 当我第一次和我们的 NLP 主要研究人员谈起这个概念时,她的原话是这样的。可能她是对的,但它也是一个非常有趣的概念,最近在 Javascript 领域得到了越
【导读】本文中作者为初学者解释了如何使用 JavaScript 来搭建一个神经网络。不用担心,这不是一份深入介绍隐藏输入层、激励函数或如何使用 TensorFlow 的复杂教程,而是一次轻松实践。即使你不懂神经网络背后的深入内容,也可以完成这个简单又有趣的实践。
选自Towards Data Science 作者:Sebastian Kwiatkowski 机器之心编译 参与:Nurhachu Null、路雪 本文作者 Sebastian Kwiatkowski 介绍了使用 JavaScript 实现 GPU 加速神经网络的四个项目:deeplearn.js、Propel、gpu.js 和 Brain.js。 根据 GitHub Octoverse 2017 报告,JavaScript 是过去一年中 GitHub 最流行的编程语言。根据 pull requests
AiTechYun 编辑:xiaoshan.xiang 本文的内容并不是关于神经网络的深度教程,在这里既不会深入研究输入层、激活函数的内部原理,也不会教你如何使用Tensorflow。它只是一个简单的,初学者级别的文章,这篇文章是关于如何实现Brain.js的浅显解释。 开始 以下是我们将要做的: 1.创建起始文件 2.想用神经网络做什么 3.设置Brain.js并找出如何处理训练数据和用户输入 4.收集一些训练数据 5.运行神经网络 6.用处 如果你希望只下载此项目的工作版本,而不是按照文章进行操作,那么
TensorFlow是Google推出的开源机器学习框架,并针对浏览器、移动端、IOT设备及大型生产环境均提供了相应的扩展解决方案,TensorFlow.js就是JavaScript语言版本的扩展,在它的支持下,前端开发者就可以直接在浏览器环境中来实现深度学习的功能,尝试过配置环境的读者都知道这意味着什么。浏览器环境在构建交互型应用方面有着天然优势,而端侧机器学习不仅可以分担部分云端的计算压力,也具有更好的隐私性,同时还可以借助Node.js在服务端继续使用JavaScript进行开发,这对于前端开发者而言非常友好。除了提供统一风格的术语和API,TensorFlow的不同扩展版本之间还可以通过迁移学习来实现模型的复用(许多知名的深度学习模型都可以找到python版本的源代码),或者在预训练模型的基础上来定制自己的深度神经网络,为了能够让开发者尽快熟悉相关知识,TensorFlow官方网站还提供了一系列有关JavaScript版本的教程、使用指南以及开箱即用的预训练模型,它们都可以帮助你更好地了解深度学习的相关知识。对深度学习感兴趣的读者推荐阅读美国量子物理学家Michael Nielsen编写的《神经网络与深度学习》(英文原版名为《Neural Networks and Deep Learning》),它对于深度学习基本过程和原理的讲解非常清晰。
选自Medium 机器之心编译 参与:Panda 配置环境、安装合适的库、下载数据集……有时候学习深度学习的前期工作很让人沮丧,如果只是为了试试现在人人都谈的深度学习,做这些麻烦事似乎很不值当。但好在我们也有一些更简单的方法可以体验深度学习。近日,编程学习平台 Scrimba 联合创始人 Per Harald Borgen 在 Medium 上发文介绍了一种仅用 30 行 JavaScript 代码就创建出了一个神经网络的教程,而且使用的工具也只有 Node.js、Synaptic.js 和浏览器而已。另外
写这篇文章的目的是给现有web开发的同事提供一些新的开发方向,认识新的js开发领域!
选自GitHub 作者:Robin Wieruch 机器之心编译 JavaScript 是一种流行的高级编程语言,它被世界上的绝大多数网站所使用,也被所有主流浏览器所支持。随着深度学习的火热,越来越多
神经网络可视化是指通过图形化的方式展示神经网络的结构、参数、输入、输出、中间结果等信息,可以帮助用户更好地神经网络的内部工作原理和特征提取过程,以优化神经网络模型
这是 Siraj Raval 在 Youtube 上用 Tensorflow.js 实现Evolution建模的代码。
来源 | Analytics Vidhya 编译 | 磐石 出品 | 磐创AI技术团队 磐创AI导读:本文介绍了github上最近比较火的7个机器学习项目,每一个都值得上手。 目录: · 介绍 · Person Blocker(人体自动遮挡) · AstroNet(天体网络) · ANN Visualizer(神经网络可视化) · Fast Pandas · Tensorflow.js · Caffe 64(小巧版caffe) · Tensorflow Hub 介绍 GitHub是我生活中不可或缺的一
在本文中我们来研究怎样用 TensorFlow.js 创建基本的 AI 模型,并用更复杂的模型实现一些有趣的功能。我只是刚刚开始接触人工智能,尽管不需要深入的人工智能知识,但还是需要搞清楚一些概念才行。
懒得看文章?没关系,稍后会附上文章内容概述,同时,更希望能通过阅读这一期的精读,穿插着深入阅读原文。
关于人工智能的项目,相信大家都看过或者用过不少了,但它们的大多数看上去都十分“高大上”,让人感觉要掌握他们犹如习屠龙之术一样。事实上,有很多关于人工智能的项目还是十分实用的,而且用途还十分有趣,下面就简单为大家盘点 10 个功能独特的开源人工智能项目。
Stock Prediction Models - Gathers machine learning and deep learning models for Stock forecasting, included trading bots and simulations
利用递归神经网络玩的"史莱姆排球"游戏。你能打败AI吗?
神经网络(NN)架构图制作起来往往费时耗力,很多时候机器学习研究人员需要从头开始构建相关图。
关于人工智能的项目,相信大家都看过或者用过不少了,但它们的大多数看上去都十分“高大上”,让人感觉要掌握他们犹如习屠龙之术一样。事实上,有很多关于人工智能的项目还是十分实用的,而且用途还十分有趣,下面就
原文地址:10 Machine Learning Examples in JavaScript
推荐 10 个饱受好评且功能独特的开源人工智能项目 关于人工智能的项目,相信大家都看过或者用过不少了,但它们的大多数看上去都十分“高大上”,让人感觉要掌握他们犹如习屠龙之术一样。事实上,有很多关于人工
AI UNION 人工智能产业技术创新战略联盟 这里是人工智能联盟,汇聚了最新的AI新闻资讯,还有最前沿的国内外AI开源技术,最具价值的AI创新企业,最具权威的行业导师,和最具实力的创投机构!如果你身处AI圈,那么在这里你不但能找到你最需要的,还能发现你意想不到的。 推荐 10 个饱受好评且功能独特的开源人工智能项目 关于人工智能的项目,相信大家都看过或者用过不少了,但它们的大多数看上去都十分“高大上”,让人感觉要掌握他们犹如习屠龙之术一样。事实上,有很多关于人工智能的项目还是十分实用的,而且用途还十分有趣
本文介绍了10个有趣实用的开源人工智能项目,涵盖了机器学习、深度学习、自然语言处理、计算机视觉、强化学习等多个领域。这些项目具有创新性、实用性和可扩展性,可以为不同领域的开发者提供灵活、高效、可复用的解决方案。
戳蓝字“IMWeb前端社区”关注我们哦! 0写在前面 随着时间的推移,机器学习库变得更快也更易于使用,其发展速度丝毫没有放缓的迹象。虽然一直以来 Python 都是机器学习的重要语言,但目前的神经网络可以在任何语言中运行,包括 JavaScript! 最近一段时间,Web 生态系统发展迅速,虽然 JavaScript 和 Node.js 在性能上仍然不及 Python 和 Java,但它们也已经强大到足以处理许多机器学习的问题。Web 开发语言非常易用,它们在这一点上受益匪浅——你只需要在 Web 浏
作者:Per Harald Borgen 编译:高宁,Saint,钱天培 *本文含大量代码,如需原文请从文末来源链接获取。 自己搭建神经网络太复杂? 别怕! 今天我们将手把手教你如何用30行代码轻松创建一个神经网络。 在本篇文章中,你将学到 如何使用Synaptic.js(https://synaptic.juancazala.com/#/)创建和训练神经网络。 利用这款工具,我们可以在浏览器中用Node.js进行深度学习。 今天我们要讲的例子是一个非常简单的神经网络,我们将用它来学习逻辑异或方程(XOR
随着时间的推移,机器学习库变得更快也更易于使用,其发展速度丝毫没有放缓的迹象。虽然一直以来 Python 都是机器学习的重要语言,但目前的神经网络可以在任何语言中运行,包括 JavaScript!
本文介绍了10个功能强大的开源人工智能项目,这些项目分别是:STYLE2Paints、SerpentAI、Synaptic.js、Snake-AI、Uncaptcha、Sockeye、PHP-ML、CycleGAN、DeepLearn.js和TensorFire。这些项目涵盖了机器学习的各个方面,包括图像处理、神经网络框架、游戏AI、自然语言处理等,可以为开发人员提供各种场景下的AI应用。
并非每个回归或分类问题都需要通过深度学习来解决。甚至可以说,并非每个回归或分类问题都需要通过机器学习来解决。毕竟,许多数据集可以用解析方法或简单的统计过程进行建模。
李林 发自 学院路 量子位 出品 | 公众号 QbitAI 正所谓古有仓颉,今有神经网络。 最近,谷歌大脑研究员David Ha做了个让神经网络和你一起写“汉字”的网页版Demo。你在页面上写几笔,神
【导读】关于人工智能的项目,相信大家都看过或者用过不少了,但它们的大多数看上去都十分“高大上”,让人感觉要掌握他们犹如习屠龙之术一样。事实上,有很多关于人工智能的项目还是十分实用的,而且用途还十分有趣,下面就简单为大家盘点 10 个功能独特的开源人工智能项目。 1. STYLE2PAINTS:强大的为线稿上色的 AI https://www.oschina.net/p/style2paints 推荐理由:新一代的强大线稿上色 AI,可根据用户上传的自定义色彩给线稿进行上色。项目提供了在线使用网站,十分方便使
在这篇文章,我将会展示给你如何使用 Synaptic.js 创建并训练一个神经网络,它允许你在 Node.js 和浏览器中进行深度学习。
TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理。Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算,TensorFlow为张量从流图的一端流动到另一端计算过程。
由于服务器,客户端和消息是分离的,因此很容易与后端进行通信。此项目是用 Python 编写的 AI agent,可以学习与环境的交互。这个实验是利用 neuroevolution (神经进化)在迷宫中寻找一条路径。
JavaScript开发人员倾向于寻找可用于机器学习模型训练的JavaScript框架。下面是一些机器学习算法,基于这些算法可以使用本文中列出的不同JavaScript框架来模型训练:
【导读】如果你需要深度学习模型,那么 PyTorch 和 TensorFlow 都是不错的选择。
为了帮助崭露头角的音乐家为他们的歌曲创造最佳节奏,来自日本AI创业公司的开发人员开发了一种名为Neural Beatboxer的深度学习系统,可将日常的声音转换为数小时自动编译的节奏。
【新智元导读】GitHub上根据星级(stra)列出了最常用的53个深度学习项目。其中,最受欢迎的是TensorFlow。表格的整理人ID分别是aymericdamien、lenck、pjreddie、vmarkovtsev和JohnAllen。这样一份实用工具表,赶紧收藏吧~ 项目名称星数简介TensorFlow29622使用数据流图计算可扩展机器学习问题。Caffe11799一个高效的开源深度学习框架。Neural Style10148由Torch实现的神经网络算法。Deep Dream9042一款图像
我想大多数人和我一样,第一次听见“人工智能”这个词的时候都会觉得是一个很高大上、遥不可及的概念,特别像我这样一个平凡的前端,和大部分人一样,都觉得人工智能其实离我们很遥远,我们对它的印象总是停留在各种各样神奇而又复杂的算法,这些仿佛都是那些技术专家或者海归博士才有能力去做的工作。我也曾一度以为自己和这个行业没有太多缘分,但自从Tensorflow发布了JS版本之后,这一领域又引起了我的注意。在python垄断的时代,发布JS工具库不就是意味着我们前端工程师也可以参与其中?
五大引领AI工程的JavaScript工具,为欲将LLM融入项目的开发者提供关键资源。
在本文中,我将向你展示如何使用Synaptic.js来创建和训练神经网络,它允许你在Node.js和浏览器中进行深度学习。我们将创建最简单的神经网络:一个能够解决XOR方程的问题。 但在我们看代码之前,我们先来看看神经网络的基本知识。 神经元和突触 神经网络的第一个组成部分是,神经元。神经元就像一个函数,它需要一些输入,然后返回一个输出。 有很多不同类型的神经元。我们的网络将使用S函数的神经细胞,它取任何给定的数字,并将其压缩为0到1之间的值。 下面的圆圈说明了一个S型的神经元。它的输入是5,输出是1。箭头
我记得在当年Java小程序仍然很受欢迎的时候有个游戏叫“软泥小排球”。虽然这个游戏在物理上面有一些投机取巧的部分,但是许多跟我一样的孩子却被它深深的吸引了,并且日以继夜的花费时间在宿舍打游戏而没有做其他实际性工作。
什么是 CNN?Convolutional Neural Network,中文译为「卷积神经网络」。
本文翻译自deeplearnJS的示例教程,并结合了我在学习过程中的理解。 deeplearnJS简介: deeplearn.js是用于机器学习的开源WebGL加速JavaScript库。 deepl
领取专属 10元无门槛券
手把手带您无忧上云