本章将为读者介绍基于深度学习的生成模型。这种模型的形式主要是根据原始图像推测图像具备的一些性质,例如根据数字图像推测数字的名称,根据自然场景图像推测物体的边界;而生成模型恰恰相反,通常给出的输入是图像
编者按:本书节选自图书《深度学习轻松学》第十章部分内容,书中以轻松直白的语言,生动详细地介绍了深层模型相关的基础知识,并深入剖析了算法的原理与本质。同时还配有大量案例与源码,帮助读者切实体会深度学习的核心思想和精妙之处。 又双叒叕赠书啦!请关注文末活动。 本章将为读者介绍基于深度学习的生成模型。前面几章主要介绍了机器学习中的判别式模型,这种模型的形式主要是根据原始图像推测图像具备的一些性质,例如根据数字图像推测数字的名称,根据自然场景图像推测物体的边界;而生成模型恰恰相反,通常给出的输入是图像具备的性质,而
导语:本章将为读者介绍基于深度学习的生成模型。前面几章主要介绍了机器学习中的判别式模型,这种模型的形式主要是根据原始图像推测图像具备的一些性质,例如根据数字图像推测数字的名称,根据自然场景图像推测物体的边界;而生成模型恰恰相反,通常给出的输入是图像具备的性质,而输出是性质对应的图像。这种生成模型相当于构建了图像的分布,因此利用这类模型,我们可以完成图像自动生成(采样)、图像信息补全等工作。另外,小编Tom邀请你一起搞事情! 在深度学习之前已经有很多生成模型,但苦于生成模型难以描述难以建模,科研人员遇到了很多
来源:1024深度学习 作者:冯超 本文长度为2600字,建议阅读6分钟 本章介绍基于深度学习思想的生成模型——VAE和GAN,以及GAN的变种模型。 在深度学习之前已经有很多生成模型,但苦于生成模型难以描述难以建模,科研人员遇到了很多挑战,而深度学习的出现帮助他们解决了不少问题。本章介绍基于深度学习思想的生成模型——VAE和GAN,以及GAN的变种模型。 VAE 本节将为读者介绍基于变分思想的深度学习的生成模型——Variational autoencoder,简称VAE。 1.1 生成式模型 前
作者:Belter。专注于生物方向的数据分析,一位编程爱好者。关注Python, R和大数据。
样本空间Ω:随机实验所有结果的集合。 在这里,每个结果ω ∈ Ω可以看作实验结束时真实世界状态的完整描述。
随机变量的函数 在前面的文章中,我先将概率值分配给各个事件,得到事件的概率分布。 通过事件与随机变量的映射,让事件“数值化”,事件的概率值转移到随机变量上,获得随机变量的概率分布。 我们使用随机变量的
随着Hadoop等处理大数据技术的出现和发展,机器学习也越来越走进人们的视线。其实早在Hadoop之前,机器学习和数据挖掘早已经作为单独的学科而存在,那为什么在hadoop出现之后,机器学习如此的引人注目呢?一个重要原因是hadoop的出现使很多人拥有了处理海量数据的技术支撑,进而发现数据的重要性,而要想从数据中发现有价值的信息,选择机器学习似乎是必然的趋势。当然也不排除舆论的因素,其实本人一直对很多人宣称掌握了机器学习持怀疑态度。而要想理解机器学习的精髓,数学知识是不可或缺的,比如线性代数,概率论和微积分
一. 概念解释 PDF:概率密度函数(probability density function), 在数学中,连续型随机变量的概率密度函数(在不至于混淆时可以简称为密度函数)是一个描述这个随机变量的输出值,在某个确定的取值点附近的可能性的函数。 PMF : 概率质量函数(probability mass function), 在概率论中,概率质量函数是离散随机变量在各特定取值上的概率。 CDF : 累积分布函数 (cumulative distribution function),又叫分布函数,是概率密度函
PDF:概率密度函数(probability density function), 在数学中,连续型随机变量的概率密度函数(在不至于混淆时可以简称为密度函数)是一个描述这个随机变量的输出值,在某个确定的取值点附近的可能性的函数。
随机变量 Random Variables 如果一个变量的值存在一个与之相关联的概率分布,则称该变量为“随机变量(Random Variable)”。数学上更严谨的定义如下: 设随机试验的样本空间为S={e},X=X(e)是定义在样本空间S上的实值单值函数,称X=X(e)为随机变量。 一个最常见的随机数例子就是扔硬币,例如可以记正面为1,反面为0。更复杂的情况是扔10次硬币,记录出现正面的次数,其值可以为0到9之间的整数。 通常可以将随机变量分为离散型随机变量(Discrete Random Varia
本文介绍期望。 期望 定义 数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。 ——百度百科 期望描述了随机变量的平均情况,衡量了随机变量 的均值。它是概率分布的泛函(函数的函数)。 计算方法 离散型 离散随机变量X的期望: image.png 若右侧级数不收敛,则期望不存在。 连续型 连续随机变量X的期望: image.png 若右侧级数不收敛,则期望不存在。 定理 定理:对于随机变量X, 设 Y=g(X)
我之前一直专注于单一的随机变量及其概率分布。我们自然的会想将以前的结论推广到多个随机变量。联合分布(joint distribution)描述了多个随机变量的概率分布,是对单一随机变量的自然拓展。联合分布的多个随机变量都定义在同一个样本空间中。 对于联合分布来说,最核心的依然是概率测度这一概念。 离散随机变量的联合分布 我们先从离散的情况出发,了解多个随机变量并存的含义。 之前说,一个随机变量是从样本空间到实数的映射。然而,所谓的映射是人为创造的。从一个样本空间,可以同时产生多个映射。比如,我们的实验是连
作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明。谢谢!
随着Hadoop等大数据的出现和技术的发展,机器学习越来越多地进入人们的视线。
计算机科学作为理工科一个独特的分支,本质上仍然是建立在逻辑思维上的一门科学,良好的概率论思维有助于设计高效可行的算法。
在几乎所有的教材中,介绍概率论时都是从事件和样本空间说起的,但是后面的概率论都是围绕着随机变量展开的。可以说前面的事件和样本空间都是引子,引出了随机变量这个概率论中的核心概念。后面的统计学是建立在概率论的理论基础之上的,因此可以说理解随机变量这个概念是学习和运用概率论与数理统计的关键。
基于概率论的数理统计也即概率统计是现代科学研究的基础工具与方法论,错误的理解与使用概率统计也可能会导致完全错误的研究结果。即使现在,我们随便抽出一篇微生物组学研究的paper,都有可能发现其中概率统计的瑕疵,诸如线性回归算法样品数少于变量数、R2与P值未作校正、聚类结果未作检验等。无论任何时候,我们都应该尝试去反思:我的概率统计知识够吗?
上一节我们讨论的都是随机事件,某一个随机事件可能包含若干个随机试验样本空间中的随机结果,如果对于每一个可能的实验结果都关联一个特定的值,这样就形成了一个随机变量。
我们了解了“样本空间”,“事件”,“概率”。样本空间中包含了一次实验所有可能的结果,事件是样本空间的一个子集,每个事件可以有一个发生的概率。概率是集合的一个“测度”。 这一讲,我们将讨论随机变量。随机变量(random variable)的本质是一个函数,是从样本空间的子集到实数的映射,将事件转换成一个数值。根据样本空间中的元素不同(即不同的实验结果),随机变量的值也将随机产生。可以说,随机变量是“数值化”的实验结果。在现实生活中,实验结果可以是很“叙述性”,比如“男孩”,“女孩”。在数学家眼里,这些文字化
R语言是统计语言,概率又是统计的基础,所以可以想到,R语言必然要从底层API上提供完整、方便、易用的概率计算的函数。让R语言帮我们学好概率的基础课。 1. 随机变量 · 什么是随机变量? · 离散型随机变量 · 连续型随机变量 1). 什么是随机变量? 随机变量(random variable)表示随机现象各种结果的实值函数。随机变量是定义在样本空间S上,取值在实数载上的函数,由于它的自变量是随机试验的结果,而随机实验结果的出现具有随机性,因此,随机变量的取值具有一定的随机性。 R程序:生成一个在(0,1,
在仿真理论中,生成随机变量是最重要的“构建块”之一,而这些随机变量大多是由均匀分布的随机变量生成的。其中一种可以用来产生随机变量的方法是逆变换法。在本文中,我将向您展示如何使用Python中的逆变换方法生成随机变量(包括离散和连续的情况)。
---- 概述 最近在梳理统计学基础,发现一些统计学的基本知识已经全部还给老师。由于在学习和工作中用到一部分,所以又重新拿了起来。统计学:主要分为描述统计学和推论统计学。 数据集的集中趋势 在描述数据的集中趋势几种概念: 1.平均值:所有数字的平均,描述集中趋势的某特定数字。 2.众数:出现次数(频率最多)最多的数字。描述的是离散值频率最多的数字。 3.中位数:从小到大排序,排序索引中间的数字。 以上都是描述数字集的中间趋势。 4.极差:最大值减去最小值。数字之间越紧密,极差越小;反之亦然。 5.中程数:最
随机变量是一个映射/函数,将一个实数值X(w)赋予一个实验的每一个输出w。 X(Ω)=R 例如抛十次硬币,令X(w)表示序列w中正面向上的次数,如当w=HHTHHTHHTT,则X(w)=6;X只能取离散值,称为离散型随机变量 令 Ω=(x,y):x2+y2<=1 \Omega={(x,y): x^2+y^2<=1} 表示单位圆盘,输出为该圆盘中的一点w=(x,y),则有随机变量: X(ω)=x,Y(ω)=y,Z(ω)=x2+y2−−−−−−√ X(\omega)=x, Y(\omega)
概率密度函数是概率论中的核心概念之一,用于描述连续型随机变量所服从的概率分布。在机器学习中,我们经常对样本向量x的概率分布进行建模,往往是连续型随机变量。很多同学对于概率论中学习的这一抽象概念是模糊的。在今天的文章中,SIGAI将直观的解释概率密度函数的概念,帮你更深刻的理解它。
这篇文章通俗地解释了概率论的两个基石函数:概率分布函数、概率密度函数,建议不熟悉的同学,认真阅读。
交流思想,注重分析,更注重通过实例让您通俗易懂。包含但不限于:经典算法,机器学习,深度学习,LeetCode 题解,Kaggle 实战。期待您的到来! 01 — 包含的概念 通过例子介绍以下几个主要概念: 随机变量的定义 不同的X取值也会不同 离散型随机变量 古典概率 离散型随机变量X=xi时的概率 分布函数 02 — 例子阐述以上概念 一堆苹果,数量一共有5个,有好的,有坏的,如果定义事件:从中取出一个苹果其好坏标签为X,那么X就是一个随机变量,且 X 的可能取值有两种:x0 = 好果,x1 = 坏果。明
所谓机器学习和深度学习, 背后的逻辑都是数学, 所以数学基础在这个领域非常关键, 而统计学又是重中之重, 机器学习从某种意义上来说就是一种统计学习。
📚 文档目录 随机事件及其概率 随机变量及其分布 期望和方差 大数定律与中心极限定理 数理统计的基本概念 参数估计 假设检验 多维 回归分析和方差分析 降维 8.1 多维概率分布 分布函数: F(x,y) = P\{X \leq x,Y \leq y\} 密度函数: \displaystyle f(x,y) = \frac{\partial F}{\partial x\partial y} 边缘分布: 设 (X, Y) 为二维随机变量,称一维随机变量 X 或 Y 的概率分布为二维随机变量 (X, Y) 关于
前面介绍的分布描述量,比如期望和方差,都是基于单一随机变量的。现在考虑多个随机变量的情况。我们使用联合分布来表示定义在同一个样本空间的多个随机变量的概率分布。 联合分布中包含了相当丰富的信息。比如从联合分布中抽取某个随机变量的边缘分布,即获得该随机变量的分布,并可以据此,获得该随机变量的期望和方差。这样做是将视线限制在单一的一个随机变量上,我们损失了联合分布中包含的其他有用信息,比如不同随机变量之间的互动关系。为了了解不同随机变量之间的关系,需要求助其它的一些描述量。 协方差 协方差(covariance)
我们已经知道什么是离散随机变量。离散随机变量只能取有限的数个离散值,比如投掷一个撒子出现的点数为随机变量,可以取1,2,3,4,5,6。每个值对应有发生的概率,构成该离散随机变量的概率分布。 离散随机变量有很多种,但有一些经典的分布经常重复出现。对这些经典分布的研究,也占据了概率论相当的一部分篇幅。我们将了解一些离散随机变量的经典分布,了解它们的含义和特征。 伯努利分布 伯努利分布(Bernoulli distribution)是很简单的离散分布。在伯努利分布下,随机变量只有两个可能的取值: 1和0。随机
关键字全网搜索最新排名 【机器学习算法】:排名第一 【机器学习】:排名第二 【Python】:排名第三 【算法】:排名第四 条件随机场部分分为两篇讲解,今天这一篇主要简单的讲述什么是条件随机场以及在这之前的概率无向图模型,下一次将从优化算法的层面上论述如何优化这个问题。(理解本篇文章需要对数理统计和图论有一定的基础) 条件随机场(Conditional Random Fields),简称 CRF,是一种判别式的概率图模型。条件随机场是在给定随机变量X条件下,随机变量Y的马尔科夫随机场。原则上,条件随机场的图
前面学习了朴素贝叶斯的原理,并且利用朴素贝叶斯原理对西瓜数据集3.0数据集进行了分类:朴素贝叶斯“朴素”在哪里?,今天我们更进一步,来探讨一下贝叶斯网络的原理以及应用。
指示器随机变量是一种特殊的随机变量,它只有两个取值:0和1。通常用I来表示指示器随机变量,它的取值为1表示事件发生,取值为0表示事件未发生。在掷骰子的例子中,我们可以将指示器随机变量定义为:
熵、交叉熵是机器学习中常用的概念,也是信息论中的重要概念。它应用广泛,尤其是在深度学习中。本文对交叉熵进行系统的、深入浅出的介绍。文章中的内容在已经出版的《机器学习与应用》(清华大学出版社,雷明著)中有详细的介绍。
版权声明:本文为博主-姜兴琪原创文章,未经博主允许不得转载。
统计学一般分统计描述及统计推断两部分。统计描述是通过图表或数学方法,对数据资料进行整理后描述数据的客观规律,而统计推断则是使用从总体中随机抽取的数据样本,用样本数据总结的规律去对总体的未知特征进行推断。本章主要学习统计推断常见的概念及相关基础内容。
1、我们借助概率论来解释分析机器学习为什么是这样的,有什么依据,同时反过来借助概率论来推导出更多机器学习算法。很多人说机器学习是老中医,星座学,最主要的原因是机器学习的很多不可解释性,我们应用概率知识可以解释一部分,但还是很多值得我们去解释理解的东西,同时,什么时候机器学习更多的可解释了,反过来,可以用那些理论也可以继续为机器学习的,对人工智能创造推出更多的理论,等到那一天,也许真的能脱离更多的人工智障了。
本文介绍随机变量中正交、不相关、独立的区别和联系。 概述 三者均是描述随机变量之间关系的概念,看似都可以表示两个随机变量的疏远关系,但定义和约束均有不同。 考察m维随机变量X,Y之间的关系。 定义 正交 定义R(X, Y) = E[XY]为相关函数:若R(X, Y)=0,称X,Y正交 不相关 定义 E[XY] = E[X]E[Y],则X,Y不相关 X,Y的协方差: Cov(X,Y)=E[XY]- E[X]E[Y] 不相关也可以用协方差为0表示 X,Y的相关系数: r(X, Y)
1 信息量 定义:信息量是对信息的度量。 就跟时间的度量是秒一样,当我们考虑一个离散的随机变量x的时候,当我们观察到的这个变量的一个具体值的时候,我们接收到了多少信息呢? 多少信息用信息量来衡量,我
牛顿-莱布尼茨公式展示了微分与积分的基本关系: 在一定程度上微分与积分互 为逆运算.
Random Variable 用于生成随机数字字符串并将其存储在变量中,以备后用
标题: 机器学习为什么要使用概率 概率学派和贝叶斯学派 何为随机变量和何又为概率分布? 条件概率,联合概率和全概率公式: 边缘概率 独立性和条件独立性 期望、方差、协方差和相关系数 常用概率分布 贝叶
领取专属 10元无门槛券
手把手带您无忧上云