Dear,大家好,我是“前端小鑫同学”,😇长期从事前端开发,安卓开发,热衷技术,在编程路上越走越远~ Electron是一个使用 JavaScript、HTML 和 CSS 构建桌面应用程序的框架。 嵌入 Chromium 和 Node.js 到 二进制的 Electron 允许您保持一个 JavaScript 代码代码库并创建 在Windows上运行的跨平台应用 macOS和Linux——不需要本地开发 经验。 背景说明: 窗口指的就是我们在电脑端经常使用的软件时候显示Logo,标题和操作最小化,最大化
近些年的顶会,出现了一部分利用互信息取得很好效果的工作,它们横跨NLP、CV以及graph等领域。笔者最近也在浸淫(meng bi)这一方向,在这里和大家简要分享一些看法,如有雷同,不胜荣幸。
https://www.cnblogs.com/poloyy/category/1680176.html
from selenium import webdriver import time import urllib
GAN的思想就是:这是一个两人的零和博弈游戏,博弈双方的利益之和是一个常数,比如两个人掰手腕,假设总的空间是一定的,你的力气大一点,那你就得到的空间多一点,相应的我的空间就少一点,相反我力气大我就得到的多一点,但有一点是确定的就是,我两的总空间是一定的,这就是二人博弈,但是呢总利益是一定的。
变分自编码器(VAE)是当下最流行的生成模型系列之一,它可以被用来刻画数据的分布。经典的期望最大化(EM)算法旨在学习具有隐变量的模型。本质上,VAE 和 EM 都会迭代式地优化证据下界(ELBO),从而最大化观测数据的似然。本文旨在为 VAE 和 EM 提供一种统一的视角,让具有机器学习应用经验但缺乏统计学背景的读者最快地理解 EM 和 VAE。 论文链接(已收录于AI open):https://www.aminer.cn/pub/6180f4ee6750f8536d09ba5b 1 引言 我们往往
Generative Adversarial Network,就是大家耳熟能详的 GAN,由 Ian Goodfellow 首先提出,在这两年更是深度学习中最热门的东西,仿佛什么东西都能由 GAN 做出来。我最近刚入门 GAN,看了些资料,做一些笔记。 1.Generation 什么是生成(generation)?就是模型通过学习一些数据,然后生成类似的数据。让机器看一些动物图片,然后自己来产生动物的图片,这就是生成。 以前就有很多可以用来生成的技术了,比如 auto-encoder(自编码器),结构如
机器之心原创 作者:蒋思源 本文是机器之心第二个 GitHub 实现项目,上一个 GitHub 实现项目为从头开始构建卷积神经网络。在本文中,我们将从原论文出发,借助 Goodfellow 在 NIPS 2016 的演讲和台大李弘毅的解释,完成原 GAN 的推导、证明与实现。 本文主要分四部分,第一部分描述 GAN 的直观概念,第二部分描述概念与优化的形式化表达,第三部分将对 GAN 进行详细的理论推导与分析,最后我们将实现前面的理论分析。 GitHub项目地址:https://github.com/jiq
主要是基于图深度学习的入门内容。讲述最基本的基础知识,其中包括深度学习、数学、图神经网络等相关内容。该教程由代码医生工作室出版的全部书籍混编节选而成。偏重完整的知识体系和学习指南。
推荐系统对于应对信息过载挑战至关重要,它们根据用户的个人偏好提供定制化推荐。近年来深度学习技术极大地推动了推荐系统的发展,提升了对用户行为和偏好的洞察力。
TLDR: 本文全面综述了自监督学习(SSL)在推荐系统中的应用,深入分析了逾170篇论文。提出了一个涵盖九大推荐场景的自监督分类体系,详细探讨了对比学习、生成学习和对抗学习三种SSL范式,并在文中讨论了未来研究方向。
最近开始接触C++,所以非常想用C++做一些东西,前两天更新迅雷的程序,更新完之后,眼前一亮,界面有了很大的改进,不清楚是使用什么技术实现的, 因为最近在弄MFC,所以想先使用MFC开发一下主界面,先
是一个非常复杂的分布,那么使用这种方式难以获得一个比较理想的模型。这种强制性的约束会带来各种限制,而我们则是希望
这是专栏《AI初识境》的第11篇文章。所谓初识,就是对相关技术有基本了解,掌握了基本的使用方法。
今天在PD Lib和DL斗智斗勇时,突然想起了自己非常想学的GAN,机缘巧合下便百度了,得到了以下两篇文章:
按计划今天宏哥继续讲解倚天剑-css的定位元素的方法:ID属性值定位、其他属性值定位和使用属性值的一部分定位(这个类似xpath的模糊定位)。
要实现这几种显示模式。其实只要对播放控件的布局进行些许调整即可。那EasyPlayer是怎么实现的呢?
Selenium 有很多功能, 但其核心是 web 浏览器自动化的一个工具集,它允许用户模拟终端用户执行的常见活动;将文本输入到字段中,选择下拉值和复选框,并单击文档中的链接。 它还提供许多其他控件,比如鼠标移动、任意 JavaScript 执行等等。
主成分分析(PCA)是一种降维算法,通常用于高维数据降维减少计算量以及数据的降维可视化。在本文中,我将从机器学习的角度来探讨主成分分析的基本思想。本次只涉及简单的PCA,不包括PCA的变体,如概率PCA和内核PCA。
针对119.0.x的版本驱动需要在 https://googlechromelabs.github.io/chrome-for-testing/ 中下载
BrowserWindow模块是用于创建和管理图形用户界面的窗口。它提供了一种在桌面应用程序中创建原生窗口的方式,类似于浏览器中的窗口。
机器之心发布 作者:潘子琦 单位:上交BCMI实验室 现有的有监督解耦方法,比如把中间表征解耦成种类相关的表征和种类无关的表征,大多基于交换生成的经验性框架,缺乏理论指导,无法保证种类相关表征中不包含种类无关的信息。在本文中,来自上海交通大学的研究者尝试建立信息瓶颈(Information Bottleneck, IB)和有监督解耦之间的联系,为有监督解耦提供理论指导。 信息瓶颈是一种从源数据中提取出与任务目标有关信息的方法,一般通过优化权衡压缩项和预测项的 IB Lagrangian 来实现。现有文献已经
笔者阅读的是中文书籍,所提到的公式,笔者将给出其在英文书籍上的页码。英文书籍见 Sutton 个人主页:http://incompleteideas.net/book/the-book.html
来源:Deephub Imba 本文约1500字,建议阅读9分钟 本文解释了 MLE 的工作原理和方式,以及它与 MAP 等类似方法的不同之处。 什么是最大似然估计(MLE) 最大似然估计(Maximum Likelihood Estimation)是一种可以生成拟合数据的任何分布的参数的最可能估计的技术。它是一种解决建模和统计中常见问题的方法——将概率分布拟合到数据集。 例如,假设数据来自泊松(λ)分布,在数据分析时需要知道λ参数来理解数据。这时就可以通过计算MLE找到给定数据的最有可能的λ,并将其用作
/usr/local/nodejs/bin/yarn -> /usr/local/nodejs/lib/node_modules/yarn/bin/yarn.js
最大似然估计(Maximum Likelihood Estimation)是一种可以生成拟合数据的任何分布的参数的最可能估计的技术。它是一种解决建模和统计中常见问题的方法——将概率分布拟合到数据集。
机器之心报道 编辑:小舟、陈萍 通用人工智能,用强化学习的奖励机制就能实现吗? 几十年来,在人工智能领域,计算机科学家设计并开发了各种复杂的机制和技术,以复现视觉、语言、推理、运动技能等智能能力。尽管这些努力使人工智能系统在有限的环境中能够有效地解决特定的问题,但却尚未开发出与人类和动物一般的智能系统。 人们把具备与人类同等智慧、或超越人类的人工智能称为通用人工智能(AGI)。这种系统被认为可以执行人类能够执行的任何智能任务,它是人工智能领域主要研究目标之一。关于通用人工智能的探索正在不断发展。近日强化学习
主动推理是一种建模生物和人工智能代理行为的概率框架,源于最小化自由能的原则。近年来,该框架已成功应用于多种旨在最大化奖励的情境中,提供了与替代方法相媲美甚至有时更好的性能。在本文中,我们通过展示主动推理代理如何以及何时执行最大化奖励的最优操作,澄清了奖励最大化与主动推理之间的联系。确切地说,我们展示了在何种条件下主动推理产生贝尔曼方程的最优解,该方程是模型驱动的强化学习和控制的几种方法的基础。在部分观察到的马尔可夫决策过程中,标准的主动推理方案可以产生规划时域为1时的贝尔曼最优操作,但不能超越。相反,最近开发的递归主动推理方案(精细推理)可以在任何有限的时间范围内产生贝尔曼最优操作。我们通过讨论主动推理与强化学习之间更广泛的关系,补充了这一分析。
今年5月,DeepMind发布了一个多模态人工智能系统Gato,仅靠一套模型参数即可同时执行600多种不同的任务,一时引起行业内对通用人工智能(AGI)的热议。
3.这里可以修改scrollTop 的值,来定位右侧滚动条的位置,0是最上面,10000是最底部。
最近一直学习electron25集成vite4.x技术开发跨端应用。就搭建了一个electron-chatgpt聊天EXE程序。
来源:1024深度学习 作者:冯超 本文长度为2600字,建议阅读6分钟 本章介绍基于深度学习思想的生成模型——VAE和GAN,以及GAN的变种模型。 在深度学习之前已经有很多生成模型,但苦于生成模型难以描述难以建模,科研人员遇到了很多挑战,而深度学习的出现帮助他们解决了不少问题。本章介绍基于深度学习思想的生成模型——VAE和GAN,以及GAN的变种模型。 VAE 本节将为读者介绍基于变分思想的深度学习的生成模型——Variational autoencoder,简称VAE。 1.1 生成式模型 前
本章将为读者介绍基于深度学习的生成模型。这种模型的形式主要是根据原始图像推测图像具备的一些性质,例如根据数字图像推测数字的名称,根据自然场景图像推测物体的边界;而生成模型恰恰相反,通常给出的输入是图像
编者按:本书节选自图书《深度学习轻松学》第十章部分内容,书中以轻松直白的语言,生动详细地介绍了深层模型相关的基础知识,并深入剖析了算法的原理与本质。同时还配有大量案例与源码,帮助读者切实体会深度学习的核心思想和精妙之处。 又双叒叕赠书啦!请关注文末活动。 本章将为读者介绍基于深度学习的生成模型。前面几章主要介绍了机器学习中的判别式模型,这种模型的形式主要是根据原始图像推测图像具备的一些性质,例如根据数字图像推测数字的名称,根据自然场景图像推测物体的边界;而生成模型恰恰相反,通常给出的输入是图像具备的性质,而
导语:本章将为读者介绍基于深度学习的生成模型。前面几章主要介绍了机器学习中的判别式模型,这种模型的形式主要是根据原始图像推测图像具备的一些性质,例如根据数字图像推测数字的名称,根据自然场景图像推测物体的边界;而生成模型恰恰相反,通常给出的输入是图像具备的性质,而输出是性质对应的图像。这种生成模型相当于构建了图像的分布,因此利用这类模型,我们可以完成图像自动生成(采样)、图像信息补全等工作。另外,小编Tom邀请你一起搞事情! 在深度学习之前已经有很多生成模型,但苦于生成模型难以描述难以建模,科研人员遇到了很多
RLayer.js 一款基于react.js构建的pc桌面端自定义弹出层组件。拥有精致的UI及极简的调用方式,支持顺滑拖拽、缩放及最大化等功能,让复杂的弹框场景变得简单化。
关键字全网搜索最新排名 【机器学习算法】:排名第一 【机器学习】:排名第二 【Python】:排名第三 【算法】:排名第四 前言 在支持向量机原理(一) 线性支持向量机中,我们对线性可分SVM的模型和损失函数优化做了总结。最后我们提到了有时候不能线性可分的原因是线性数据集里面多了少量的异常点,由于这些异常点导致了数据集不能线性可分,本篇就对线性支持向量机如何处理这些异常点的原理方法做一个总结。 线性可分SVM的算法过程 输入是线性可分的m个样本(x1,y1),(x2,y2),...,(xm,ym),,其中x
注意:driver.close() ,当前关闭的是主窗口,只有完成页面切换才可以关闭当前新的页面
最近做课程表的项目,找了好多个插件感觉都不好用,无意间看到了fullcalendar,还挺简单的,很方便,先贴一张项目页面
最近遇到一个项目团队是做全景视频播放的,希望用EasyPlayerPro做一个客户端程序,但是在调试DEMO的时候遇到一个问题,即配置了全屏模式后,视频只能出现在窗体左上角。
收集子域,也是渗透的初始。这里我只是简单用了fofa发现了该公司用来管理合作的一些子域名然后发现是登录管理页面,深入然后发现很多的敏感信息。也是从其中的一处敏感泄露,引发了众多漏洞的挖掘。整个测试其实就花了半个小时不到。不过男人不能说自己快!,其实我花了很长时间呢。还是那句话千里之堤毁于蚁穴呀。
一个月前,我突然有了个想法,CMS能否做的像webQQ那样,整个后台就像一个桌面系统,把功能归类到一个桌面图标里,点开某个图标后,操作里面的东西,就像在操作电脑上的某个文件夹一样简便,于是我之前写了一篇构想的文章:《关于CMS后台展示/操作方式的个人拙见》,不过认可我想法的人似乎不多。
目前网上有好多关于electron相关的文章,但是本人在开发的时候发现,网上大部分文章可以说是千篇一律,没有真正的痛点解析啥的很无语 ,好多的问题都需要自己去找、去试,这无异于加大了开发成本与学习成本,所以本篇博客会从electron 的api 到 electron +vue 组合式开发到 打包 及开发过程中遇见的问题分门别类的进行说明, 当然在最后的文末我会将我写的 electron + vue全家桶的git开源项目附上,需要的话就去git 吧
本文介绍了一种经典的迭代求解算法—EM算法。首先介绍了EM算法的概率理论基础,凸函数加jensen不等式导出算法的收敛性,算法核心简单概况为固定其中一个参数,优化另一个参数逼近上界,不断迭代至收敛的过程。然后介绍高斯混合,朴素贝叶斯混合算法基于EM算法框架的求解流程。最后介绍了基于概率隐因子的LDA主题模型,这一类基于隐因子模型-包括因子分解,概率矩阵分解皆可通过EM算法求解,且与EM思想相通。
PearDownloader.js:一个支持多协议、多源、混合P2P-CDN的下载器。 简介 PearPlayer.js发布后,吸引了业界持续的关注,同时我们也收集到了许多宝贵建议。 一方面我们将
知乎上有个讨论,说学数学的看不起搞深度学习的。曲直对错不论,他们看不起搞深度学习的原因很简单,因为从数学的角度看,深度学习仅仅是一个最优化问题而已。比如,被炒的很热的对抗式生成网络(GAN),从数学看,基本原理很容易就能说明白,剩下的仅仅是需要计算资源去优化参数,是个体力活。 本文的目的就是尽可能简单地从数学角度解释清楚GAN的数学原理,看清它的庐山真面目。 01 从生成模型说起 机器学习的模型可分为生成模型和判别模型。 简单说说二者的区别,以二分类问题来讲,已知一个样本的特征为x,我们要去判断它的类别y(
2014年Ian Goodfellow在研究使用生成模型自动生成图片的过程中,发现传统神经网络方法效果并不理想,随后缘于一个偶然的灵感,发明了生成对抗网络(GAN),在其实验数据的图片生成上取得了非常理想的效果。从此,这种全新的技术作为训练生成模型的新框架,迅速风靡人工智能各个领域并取得不少突破。
根据手头上的信息,最大化的利用,一次简单的漏洞挖掘,感觉过程很有意思分享一下~ 0x01初始 收集子域,也是渗透的初始。这里我只是简单用了fofa发现了该公司用来管理合作的一些子域名然后发现是登录管理页面,深入然后发现很多的敏感信息。也是从其中的一处敏感泄露,引发了众多漏洞的挖掘。整个测试其实就花了半个小时不到。不过男人不能说自己快!,其实我花了很长时间呢。还是那句话千里之堤毁于蚁穴呀。
前言 因为一些特殊的业务需求,经过一个多月的蛰伏及思考,我开发了这款 jQuery 图片查看器插件 Magnify,它实现了 Windows 照片查看器的所有功能,比如模态窗的拖拽、调整大小、最大化,图片的缩放、旋转,平移、键盘控制等。插件的样式都是最基础的 CSS,定制非常容易,可以轻松修改成自己喜欢的样式。随后会陆续发布 React 及 Vue 相关版本的插件。本文主要介绍插件的特点及使用方法,而关于插件开发的细节将会在之后的具体文章中说明。 Github: https://github.com/
领取专属 10元无门槛券
手把手带您无忧上云