首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

算法与数据结构(三) 二叉树的遍历及其线索化(Swift版)

前面两篇博客介绍了线性表的顺序存储与链式存储以及对应的操作,并且还聊了栈与队列的相关内容。本篇博客我们就继续聊数据结构的相关东西,并且所涉及的相关Demo依然使用面向对象语言Swift来表示。本篇博客我们就来介绍树结构的一种:二叉树。在之前的博客中我们简单的聊了一点树的东西,树结构的特点是除头节点以外的节点只有一个前驱,但是可以有一个或者多个后继。而二叉树的特点是除头结点外的其他节点只有一个前驱,节点的后继不能超过2个。 本篇博客,我们只对二叉树进行讨论。在本篇博客中,我们对二叉树进行创建,然后进行各种遍历

010
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    线索二叉树

    在二叉树的结点上加上线索的二叉树称为线索二叉树,对二叉树以某种遍历方式(如先序、中序、后序或层次等)进行遍历,使其变为线索二叉树的过程称为对二叉树进行线索化。 对于n个结点的二叉树,在二叉链存储结构中有n+1个空链域,利用这些空链域存放在某种遍历次序下该结点的前驱结点和后继结点的指针,这些指针称为线索,加上线索的二叉树称为线索二叉树。 这种加上了线索的二叉链表称为线索链表,相应的二叉树称为线索二叉树(Threaded BinaryTree)。根据线索性质的不同,线索二叉树可分为前序线索二叉树、中序线索二叉树和后序线索二叉树三种。 注意:线索链表解决了无法直接找到该结点在某种遍历序列中的前驱和后继结点的问题,解决了二叉链表找左、右孩子困难的问题。

    02

    数据结构 第五章 树和二叉树

    树:n(n≥0)个结点的有限集合。 当n=0时,称为空树; 任意一棵非空树满足以下条件: ⑴ 有且仅有一个特定的称为根的结点; ⑵ 当n>1时,除根结点之外的其余结点被分成m(m>0)个互不相交的有限集合T1,T2,… ,Tm,其中每个集合又是一棵树,并称为这个根结点的子树。 结点的度:结点所拥有的子树的个数。 树的度:树中各结点度的最大值。 叶子结点:度为0的结点,也称为终端结点。 分支结点:度不为0的结点,也称为非终端结点。 孩子、双亲:树中某结点子树的根结点称为这个结点的孩子结点,这个结点称为它孩子结点的双亲结点; 兄弟:具有同一个双亲的孩子结点互称为兄弟。 路径:如果树的结点序列n1, n2, …, nk有如下关系:结点ni是ni+1的双亲(1<=i<k),则把n1, n2, …, nk称为一条由n1至nk的路径;路径上经过的边的个数称为路径长度。 祖先、子孙:在树中,如果有一条路径从结点x到结点y,那么x就称为y的祖先,而y称为x的子孙。 结点所在层数:根结点的层数为1;对其余任何结点,若某结点在第k层,则其孩子结点在第k+1层。 树的深度:树中所有结点的最大层数,也称高度。 层序编号:将树中结点按照从上层到下层、同层从左到右的次序依次给他们编以从1开始的连续自然数。 有序树、无序树:如果一棵树中结点的各子树从左到右是有次序的,称这棵树为有序树;反之,称为无序树。 森林:m (m≥0)棵互不相交的树的集合。 同构:对两棵树,若通过对结点适当地重命名,就可以使这两棵树完全相等(结点对应相等,结点对应关系也相等),则称这两棵树同构。 前序遍历:树的前序遍历操作定义为: 若树为空,不进行遍历;否则 ⑴ 访问根结点; ⑵ 按照从左到右的顺序前序遍历根结点的每一棵子树。 后序遍历:树的后序遍历操作定义为: 若树为空,则遍历结束;否则 ⑴ 按照从左到右的顺序后序遍历根结点的每一棵子树; ⑵ 访问根结点。 层序遍历:树的层序遍历操作定义为: 从树的第一层(即根结点)开始,自上而下逐层遍历,在同一层中,按从左到右的顺序对结点逐个访问。

    02

    二叉树入门就是这么简单!

    自知技术有限,不过凭借着对编程的喜爱与兴趣,坚持发表一些文章,或在大神眼中,确实微不足道,也或许能给一些朋友一些启发,由于个人技术的不足,或许文章中会出现一些不足或错误之处,非常感谢大家能不吝指出,坚持写作大半年了,虽说没有什么显著的成就,但是一篇篇文章也给了我满满的记忆,作为一名普通本科的在校学生,每天坚持写一些东西,去做图,去写代码,去看一些书籍,找一些资料,帮助自己理解,再想想如何用自己的语言总结,归纳一下。技术的局限,有时候总会遇到一些盲区,写出来的文章,总是过于叙事化,理论化,缺乏实际经验,本地所模拟的一些例子,可能并不是很合理,也没有那么使用,但我也在尽量的弥补与实际开发应用的距离,总而言之,感谢各位支持,也感谢帮助过我的一个人。

    02

    深入入门系列--Data Structure--04树

    终于有机会重新回头学习一下一直困扰自身多年的数据结构了,赶脚棒棒哒。一直以来,对数据结构的掌握基本局限于线性表,稍微对树有一丢丢了解,而对于图那基本上就是不懂(不可否认,很多的考试中回避了图也是原因之一),而查找和排序只能算是了解点皮毛,简单的面试能应付的水平。关于数据结构方面的教材和视频有不少,首推严蔚敏老教授的书和视频,尤其是视频,记载的是其在清华大学的授课过程,全程通过不同的教具来演示不同的示例,非常直观。自身由于懒惰,一直也没坚持的把其看完,于是选择了相对简单的学习方法,就是选择了程杰老师的《大话数

    09

    期末复习之数据结构 第6章 树和二叉树

    答:最快方法:用叶子数=[n/2]=350 5. 设一棵完全二叉树具有1000个结点,则此完全二叉树有 500 个叶子结点,有 499 个度为2的结点,有 1 个结点只有非空左子树,有 0 个结点只有非空右子树。 答:最快方法:用叶子数=[n/2]=500 ,n2=n0-1=499。 另外,最后一结点为2i属于左叶子,右叶子是空的,所以有1个非空左子树。完全二叉树的特点决定不可能有左空右不空的情况,所以非空右子树数=0. 6. 一棵含有n个结点的k叉树,可能达到的最大深度为 n ,最小深度为 2 。 答:当k=1(单叉树)时应该最深,深度=n(层);当k=n-1(n-1叉树)时应该最浅,深度=2(层),但不包括n=0或1时的特例情况。教材答案是“完全k叉树”,未定量。) 7. 二叉树的基本组成部分是:根(N)、左子树(L)和右子树(R)。因而二叉树的遍历次序有六种。最常用的是三种:前序法(即按N L R次序),后序法(即按 L R N 次序)和中序法(也称对称序法,即按L N R次序)。这三种方法相互之间有关联。若已知一棵二叉树的前序序列是BEFCGDH,中序序列是FEBGCHD,则它的后序序列必是 F E G H D C B 。 8.中序遍历的递归算法平均空间复杂度为 O(n) 。 答:即递归最大嵌套层数,即栈的占用单元数。精确值应为树的深度k+1,包括叶子的空域也递归了一次。 9. 用5个权值{3, 2, 4, 5, 1}构造的哈夫曼(Huffman)树的带权路径长度是 33 。 三、单项选择题 ( C )1. 不含任何结点的空树 。 (A)是一棵树; (B)是一棵二叉树; (C)是一棵树也是一棵二叉树; (D)既不是树也不是二叉树 答:以前的标答是B,因为那时树的定义是n≥1 ( C )2.二叉树是非线性数据结构,所以 。 (A)它不能用顺序存储结构存储; (B)它不能用链式存储结构存储; (C)顺序存储结构和链式存储结构都能存储; (D)顺序存储结构和链式存储结构都不能使用 ( C )3. 〖01年计算机研题〗 具有n(n>0)个结点的完全二叉树的深度为 。 (A) élog2(n)ù (B) ë log2(n)û (C) ë log2(n) û+1 (D) élog2(n)+1ù 注1:éx ù表示不小于x的最小整数;ë xû表示不大于x的最大整数,它们与[ ]含义不同! 注2:选(A)是错误的。例如当n为2的整数幂时就会少算一层。似乎ë log2(n) +1û是对的? ( A )4.把一棵树转换为二叉树后,这棵二叉树的形态是 。 (A)唯一的 (B)有多种 (C)有多种,但根结点都没有左孩子 (D)有多种,但根结点都没有右孩子 5. 从供选择的答案中,选出应填入下面叙述 ? 内的最确切的解答,把相应编号写在答卷的对应栏内。 树是结点的有限集合,它A 根结点,记为T。其余的结点分成为m(m≥0)个 B 的集合T1,T2,…,Tm,每个集合又都是树,此时结点T称为Ti的父结点,Ti称为T的子结点(1≤i≤m)。一个结点的子结点个数为该结点的 C 。 供选择的答案 A: ①有0个或1个 ②有0个或多个 ③有且只有1个 ④有1个或1个以上 B: ①互不相交 ② 允许相交 ③ 允许叶结点相交 ④ 允许树枝结点相交 C: ①权 ② 维数 ③ 次数(或度) ④ 序 答案:ABC=1,1,3 6. 从供选择的答案中,选出应填入下面叙述 ? 内的最确切的解答,把相应编号写在答卷的对应栏内。 二叉树 A 。在完全的二叉树中,若一个结点没有 B ,则它必定是叶结点。每棵树都能惟一地转换成与它对应的二叉树。由树转换成的二叉树里,一个结点N的左子女是N在原树里对应结点的 C ,而N的右子女是它在原树里对应结点的 D 。 供选择的答案 A: ①是特殊的树 ②不是树的特殊形式 ③是两棵树的总称 ④有是只有二个根结点的树形结构 B: ①左子结点 ② 右子结点 ③ 左子结点或者没有右子结点 ④ 兄弟 C~D: ①最左子结点 ② 最右子结点 ③ 最邻近的右兄弟 ④ 最邻近的左兄弟 ⑤ 最左的兄弟 ⑥ 最右的兄弟 答案:A= B= C= D= 答案:ABCDE=2,1,1,3 四

    02
    领券