首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

温度对压力差压变送器精确度的影响

压力差压变送器的制造技术不断发展,产品的精确度已由上世纪六十年代的1%、0.5%提高到上世纪七八十年代的0.25%,在上世纪九十年代提高到0.1%、0.075%,近年来又提高到0.05%、0.025%。这个精确度指标通常是由变送器的制造厂商提供的,有的制造厂商称其为“参考精度”,原因在于这个精确度指标通常是在试验室恒温、恒湿及标准大气压条件下得到的,而在用户的实际生产现场,往往离试验室条件相差甚远,变送器的精确度是很难达到的,所以称为其“参考精度”可能更为合适。“参考精度”在实际使用时多半要打折扣,这个折扣有多大?怎么样才能不打或少打折扣?这是用户关心的。

02
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    神经网络低比特量化——LSQ

    在推理时以低精度操作运行的深度网络比高精度具有功耗和存储优势,但需要克服随着精度降低而保持高精度的挑战。在这里,本文提出了一种训练此类网络的方法,即 Learned Step Size Quantization,当使用来自各种架构的模型时,该方法在 ImageNet 数据集上实现了 SOTA 的精度,其权重和激活量化为2、3或4 bit 精度,并且可以训练达到全精度基线精度的3 bit 模型。本文的方法建立在现有的量化网络中学习权重的方法基础上,通过改进量化器本身的配置方式。具体来说,本文引入了一种新的手段来估计和扩展每个权重和激活层的量化器步长大小的任务损失梯度,这样它就可以与其他网络参数一起学习。这种方法可以根据给定系统的需要使用不同的精度水平工作,并且只需要对现有的训练代码进行简单的修改。

    03

    四阶龙格库塔法的基本原理_隐式龙格库塔法

    对于微分方程:y’=f(x,y) y(i+1)=y(i)+h*K1 K1=f(xi,yi) 当用点xi处的斜率近似值K1与右端点xi+1处的斜率K2的算术平均值作为平均斜率K*的近似值,那么就会得到二阶精度的改进拉格朗日中值定理: y(i+1)=y(i)+[h*( K1+ K2)/2] K1=f(xi,yi) K2=f(x(i)+h,y(i)+h*K1) 依次类推,如果在区间[xi,xi+1]内多预估几个点上的斜率值K1、K2、……Km,并用他们的加权平均数作为平均斜率K*的近似值,显然能构造出具有很高精度的高阶计算公式。经数学推导、求解,可以得出四阶龙格-库塔公式,也就是在工程中应用广泛的经典龙格-库塔算法: y(i+1)=y(i)+h*( K1+ 2*K2 +2*K3+ K4)/6 K1=f(x(i),y(i)) K2=f(x(i)+h/2,y(i)+h*K1/2) K3=f(x(i)+h/2,y(i)+h*K2/2) K4=f(x(i)+h,y(i)+h*K3) 通常所说的龙格-库塔法是指四阶而言的,我们可以仿二阶、三阶的情形推导出常用的标准四阶龙格-库塔法公式

    01

    【计算机视觉——RCNN目标检测系列】一、选择性搜索详解

    在刚刚过去的一个学期里,基本水逆了一整个学期,这学期基本没干什么活,就跟RCNN杠上了。首先是看论文,然后是网上找tensorflow写好的源码。但是,可惜的是网上给出的源码基本上是RCNN的主要作者Ross Girshick大神的代码,不同数据集换了下。因此为了理解源码,RCNN的处理过程,费劲去装了个ubuntu和win10的双系统并在Ubuntu上安装caffe,这就花费了近2周的时间。快速研究完RCNN的caffe源码之后,才转过来手写Fast RCNN的tensorflow版本的代码,这也花费了大量的时间,从踩坑到填坑再到踩坑。RCNN不是很好实现,SVM至今还没怎么看懂。接下来将会陆续更新RCNN->Fast RCNN->Faster RCNN系列的文章。在这篇文章中,主要讲解RCNN与Fast RCNN中获取图片中物体真实目标检测框的算法——选择性搜索算法。

    01
    领券