首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    [x86][QEMU]虚拟化场景下的CPU拓扑

    前言 目前的主流服务器一般是二路,即有2个NUMA node。每个NUMA上有一个CPU。比较主流的CPU一般是10Core/12Core,打开了Hyper-thread的场景下,就是2 Sockets × 10/12 Cores/socket × 2 Hyper-threads/Core,也就是40核或者48核。 对于大规格的虚拟机,尤其是32 vCPU或者40vCPU的场景下,对于计算密集型的业务,需要把物理机的CPU拓扑信息正确的透传到虚拟机中,否则跨Socket的内存访问,同一个Core下的两个Hyper-thread的资源的争抢,都是影响性能的关键因素。 分析 Host上拓扑关系 我们一般会用lscpu命令看到基本的CPU拓扑信息,也可以通过cat /proc/cpuinfo的方式看到“physical id”,“core id” cpuid 再进一步探讨,Host kernle是怎么获取到的CPU的拓扑关系的呢? Linux有命令cpuid,代码在https://github.com/tycho/cpuid cpuid命令的结果截取如下:

    04

    Cerebral Cortex: 大脑的功能发育与成长环境紧密相关

    《本文同步发布于“脑之说”微信公众号,欢迎搜索关注~~》 一、背景    大脑的发育受多方面因素影响,较高的社会经济地位(higher socioeconomic status, SES)就是其中一个重要的因素。儿童、青少年时期的SES与其较强的认知能力,学业成就和较低的精神疾病发病率有关,甚至会影响婴儿时期的大脑皮层发育。已有的一些研究发现SES与大脑的结构发育呈现紧密关系,具体表现为低SES个体的大脑结构发育加速,这表明SES会调节年龄和大脑结构发展之间的关系,目前尚不清楚其在大脑功能发育中是否存在这种调节关系,这促使人们深入地研究社会经济地位是否以及如何影响青少年大脑功能网络的发育。在大多数这些研究中,关于SES的研究是在家庭层面进行的,包括家庭收入,成员学历等,部分研究也关注了邻里社区SES的影响。然而已有的研究结果还不足以清晰的揭示SES与儿童、青少年的大脑功能发育之间的关系,以及SES是如何影响的发育的,特别是与年龄的交互作用。该研究利用费城跨年龄段的大样本横断面影像数据来研究年龄,SES和大脑功能网络拓扑之间的关系,分别从全脑水平,网络水平,以及单个大脑区域三个层次,利用图论的聚类系数和模块化指数两个网络指标,从整体到局部的研究了在青少年发育过程中,SES对其功能网络拓扑结构的影响。该研究为SES与功能网络拓扑的发展之间的联系提供了证据,为早期成长环境影响大脑神经活动提供了更深入的见解。 二、材料和方法 1、被试和数据    从Philadelphia Neurodevelopmental Cohort(PNC)数据集中选取符合排除标准的,年龄在8到22岁之间的,1012名儿童和青少年的神经影像数据,其中平均年龄15.78,女性552名。SES的测量结合了被试社区的结婚率,贫困人口比例,家庭收入以及邻里家庭收入,教育占比,人口密度,就业率等多个特征计算其SES得分。结构和功能数据的预处理借助ANTs和XCP工具包处理,将功能数据映射到皮层上进行后续功能网络分析 2、构建功能网络    对每个被试,提取N = 360 个皮层区域的BOLD信号,通过计算皮尔逊相关系数来表示每两个区域之间的功能连接,最后得到了一个360*360的功能连接矩阵,如图1。基于个体数据的差异性与局限性,只有359个节点被纳入到后续分析中。

    01
    领券