依赖图像库Leptonica,在编译tesseract前先编译Leptonica, 版本对应关系见Compiling#linux,3.05对应leptonica-1.74.tar.gz
在2021年1月份,cppan的官方网站关闭了,因此现在通过cppan自动下载tesseract所需要的环境依赖从而编译tesseract动态库的方式不可行。tesseract官方文档提供了通过sw下载环境依赖的编译方式,有兴趣的博友可以试试官方文档的方式。在这篇博客中将采用另外一种方式编译tesseract。tesseract依赖于leptonica,而leptonica又依赖于zlib、libjpeg、libpng、libtiff这4个运行库。因此我们一步步进行编译。
pytesseract只是tesseract-ocr的一种实现接口。所以要先安装tesseract-ocr(大名鼎鼎的开源的OCR识别引擎)。
https://github.com/tesseract-ocr/tesseract
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/haluoluo211/article/details/53888426
在windows上项目是可以正常运行的,部署到Linux上后,运行报异常,异常内容为:Unable to load library ‘tesseract’: Native library (linux-x86-64/libtesseract)
本文主要介绍了linux上安装tess4j项目,通过具体的解释说明,让我们从中学到linux上安装tess4j项目的精髓所在,让我们对Linux内部原理越来越熟悉,希望大家能够在以后的学习中更加快速的弄明白其中的关键。便于更好的操作。
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
按照以前的经验,编译Tesseract 3.05就是去GitHub上找一个已经解决了依赖关系(如Leptonica等)的VS2015解决方案,然后在VS中编译生成?是不是最痛苦的地方就是找不到这样的解决方案,或者在自己的Windows中不能正常编译?
OCR(Optical character recognition) —— 光学文字识别,是图像处理的一个重要分支,中文的识别具有一定挑战性,特别是手写体和草书的识别,是重要和热门的科学研究方向
a)解压leptonica,./configure&&make&&make install即可
在tesseract-ocr中会用到leptonica库。这里对leptonica简介下。
文章目录 Python 图片识别 OCR #1 需求 #2 环境 #3 安装 #3.1 macOS #3.2 Linux(CentOS) #4 使用 #4.1 python安装pytesseract库 #4.2 Python代码 #5 在线案例 Python 图片识别 OCR #1 需求 识别图片中的信息,如二维码 #2 环境 macOS / Linux Python3.7.6 #3 安装 #3.1 macOS 安装 tesseract //只安装tesseract,不安装训练工具 brew install
语言包地址:https://github.com/tesseract-ocr/tessdata
http://www.zmonster.me/2015/04/17/tesseract-install-usage.html
玩python期间,看到好多用python做的爬虫,感觉挺好玩,就开始了爬虫之旅的学习,期间受一些教程的启发想去试试学校的教务系统,可惜登录需要验证码,于是四处寻找解决方法,最终找到这个大致能看懂的。
部分图片可能由于背景颜色关系,导致此张图片无法识别,可跳过继续下一张识别。
对文本进行OCR前,必须分析和定义文档的逻辑结构。例如文本块、段落、行的位置;是否有应该重建的表格;是否有“图像”“条形码等”。
1. 下载最新的CPPAN版本。解压缩后,将cppan.exe所在的路径添加到系统变量中;
Tesseract是Ray Smith于1985到1995年间在惠普布里斯托实验室开发的一个OCR引擎,曾经在1995 UNLV精确度测试中名列前茅。但1996年后基本停止了开发。2006年,Google邀请Smith加盟,重启该项目。目前项目的许可证是Apache 2.0。该项目目前支持Windows、Linux和Mac OS等主流平台。但作为一个引擎,它只提供命令行工具。 现阶段的Tesseract由Google负责维护,是最好的开源OCR Engine之一,并且支持中文。
安装homebrew ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)" 安装完后进行测试 brew -v 返回结果 Homebrew 2.1.1-38-ge68fc53 Homebrew/homebrew-core (git revision 4465d; last commit 2019-04-22) Homebrew/homebrew-cask (git revision f
(adsbygoogle = window.adsbygoogle || []).push({});
原创内容,爬取请指明出处:https://www.cnblogs.com/Lucy151213/p/10968868.html
GitHub - Genymobile/scrcpy: Display and control your Android device
只是最近碰到有这方面的项目需求,所以简单 Mark 下本文。下面的示例是参考过他人分享的文章,之后本人再自行实践、调整和测试过的,希望对有这方面需求的人有所帮助。
tesseract 是一个google支持的开源ocr项目,其项目地址:https://github.com/tesseract-ocr/tesseract,目前最新的源码可以在这里下载。
这个包据说是开源的OCR中非常好用的一个,在图像识别的领域里,tesseract-ocr引擎曾是1995年UNLV准确度测试中最顶尖的三个引擎之一。在1995年到2006年期间,它几乎没有什么改动,但是它可能仍然是现在最准确的开源OCR引擎之一。它会读取二进制的灰度或者彩色的图像,并输出文字。一个内建的tiff阅读器让它可以读取未压缩的TIFF图像,但是如果要读取压缩过的TIFF图像,它还需要一个附加的libtiff库。
各位在企业中做Web漏洞扫描或者渗透测试的朋友,可能会经常遇到需要对图形验证码进行程序识别的需求。很多时候验证码明明很简单(对于非互联网企业,或者企业内网中的应用来说特别如此),但因为没有趁手的识别库,也只能苦哈哈地进行人肉识别,或者无奈地放弃任务。在这里,我分享一下自己使用Python和开源的tesseract OCR引擎做验证码识别的经验,并提供相关的源代码和示例供大家借鉴。 一、关于图形验证码识别与tesseractOCR 尽管多数图型验证码只有区区几个数字或字母,但你可能听说了,在进行机器识别的过程
常见的 PDF 文件可以分为两类:一种是文本转化而成(Text-Based),通常可以直接复制和粘贴;另一种是扫描文件而成(Scanned),比如影印书籍、插入图片制成的文件。依据此分类,将 Python 中处理 PDF 文件的第三方库可以简单归类:
在 Java 中,图片文字识别可以通过 Tesseract-OCR 的 API 完成。Tesseract-OCR 是一个开源的 OCR(Optical character recognition,光学字符识别)引擎,用于识别各种类型的图片中的文本。此外,我们还需要 Leptonica 库的支持,这是一个用于图像处理和分析的开源库。
经过查询tesserocr安装环境要求,需要leptonica-1.71版本以上文件;
今天要分享的内容是关于页面扭曲矫正的内容,为了让大家有一个相关的概念,下面先预览一下效果图
JavaCV(Java interface to OpenCV, FFmpeg, and more)
首先我们需要安装PIL和pytesseract库。 PIL:(Python Imaging Library)是Python平台上的图像处理标准库,功能非常强大。 pytesseract:图像识别库。
从Google的无人驾驶汽车到可以识别假钞的自动售卖机,机器视觉一直都是一个应用广泛且具有深远的影响和雄伟的愿景的领域。
Tesseract是一个开源的ocr引擎,可以开箱即用,项目最初由惠普实验室支持,1996年被移植到Windows上,1998年进行了C++化。在2005年Tesseract由惠普公司宣布开源。2006年到现在,都由Google公司开发。
前文已经简要介绍tesseract ocr引擎的安装及基本使用,其中提到使用-l eng参数来限定语言库,可以提高识别准确率及识别效率。
trustStore是存储可信任的公钥,如6中红色字体中trustStore的生成过程就是把从keyStore导出的公钥证书导入到trustStore中。
Tesserocr是python的一个OCR识别库,但其实是对tesseract做的一层python API封装,所以它的核心是tesseract。因此,在安装tesserocr之前,我们需要先安装tesseract。
今天我们就为大家介绍一款 GitHub 用户 ianzhao05 刚发布的小工具——textshot,只需要截屏就能实时生成文字。读者也可以通过此项目大致了解如何对图像中的文本进行识别。
点击上方蓝色“程序猿DD”,选择“设为星标” 回复“资源”获取独家整理的学习资料! 在我们办公时,是不是经常遇到图片内容转文字的需求? 你是用什么工具解决的呢?是手机自带拍照转文字功能?还是使用 QQ 里面的工具? 今天我们就为大家介绍一款 GitHub 用户 ianzhao05 刚发布的小工具 ——textshot,只需要截屏就能实时生成文字。读者也可以通过此项目大致了解如何对图像中的文本进行识别。 项目链接:https://github.com/ianzhao05/textshot 使用方法 运行
今天我们就为大家介绍一款 GitHub 用户 ianzhao05 刚发布的小工具 ——textshot,只需要截屏就能实时生成文字。读者也可以通过此项目大致了解如何对图像中的文本进行识别。
近日浏览网上一些图片提取文字的网站,觉得甚是有趣,花费半日也做了个在线图片识别程序,完成了两个技术方案的选择,一是tesseract+python flask的方案实现,二是tesseract+spring web的技术解决方案,并简作论述,与君共勉。
欲研究C#端如何进行图像的基本OCR识别,找到一款开源的OCR识别组件。该组件当前已经已经升级到了4.0版本。和传统的版本(3.x)比,4.0时代最突出的变化就是基于LSTM神经网络。Tesseract本身是由C++进行编写,但为了同时适配不同的语言进行调用,开放调用API并产生了诸如Java、C#、Python等主流语言在内的封装版本。本次主要研究C#封装版。
领取专属 10元无门槛券
手把手带您无忧上云