在 Linux 内核中 , MMU 内存管理单元 , 主要作用是 将 " 虚拟地址 " 映射到 真实的 " 物理地址 " 中 ,
前言: 前文《内存映射技术分析》描述了虚拟内存的管理、内存映射;《物理内存管理》介绍了物理内存管理。 本篇介绍一下内存回收。内存回收应该是整个Linux的内存管理上最难理解的部分了。 分析: 1,PFRA Page Frame Reclaim Algorithm,Linux的内存回收算法。 不过,PFRA和常规的算法不同。比如说冒泡排序或者快速排序具有固定的时间复杂度和空间复杂度,代码怎么写都差不多。而PFRA则不然,它不是一个具体的算法,而是一个策略---什么样的情况下需要做内存回收,什么样的page
大家好,我是 Peter,昨天群里有小伙伴咨询page cache的问题,看到网上有篇不错的文章,分享给大家。如果大家有想看的内容,欢迎给我留言。
在 【Linux 内核 内存管理】物理分配页 ② ( __alloc_pages_nodemask 函数参数分析 | __alloc_pages_nodemask 函数分配物理页流程 ) 博客中 , 分析了 __alloc_pages_nodemask 函数分配物理页流程如下 :
前言: 书接上回《内存映射技术分析》,继续来分析一下linux的物理内存管理。 分析: 1,物理内存 PC上的内存条,或者手机上的内存芯片,物理上实实在在的内存,就是物理内存。大小是硬件决定的,一般就是一个起始地址,加上大小。地址如何分配呢?PC上作者也不太懂,听闻BIOS可以配置。在ARM上,作者曾经看过一份电路图,当时的图上,使用32bit的高2bit作为chip select,后面的30bit作为地址总线,看过chip select信号之后,作者才明白为什么在代码上要配置起始的地址不是0,因为硬件
大概就是,进程写文件(使用缓冲 IO)过程中,写一半的时候,进程发生了崩溃,会丢失数据吗?
HugePage,就是指的大页内存管理方式。与传统的4kb的普通页管理方式相比,HugePage为管理大内存(8GB以上)更为高效。本文描述了什么是HugePage,以及HugePage的一些特性。
到目前为止,内存管理是unix内核中最复杂的活动。我们简单介绍一下内存管理,并通过实例说明如何在内核态获得内存。
Linux 内核中 , 内存节点 ( Node ) 是 " 内存管理 " 的 最顶层的结构 , 下层分别是 区域 和 页 ;
本文基于 Linux-2.4.16 内核版本 由于计算机的物理内存是有限的, 而进程对内存的使用是不确定的, 所以物理内存总有用完的可能性. 那么当系统的物理内存不足时, Linux内核使用什么方案来
对 Linux 稍有了解的人都知道,Linux 会将物理的随机读取内存(Random Access Memory、RAM)按页分割成 4KB 大小的内存块,而今天要介绍的 Swapping 机制就与内存息息相关,它是操作系统将物理内存页中的内容拷贝到硬盘上交换空间(Swap Space)以释放内存的过程,物理内存和硬盘上的交换分区组成了操作系统上可用的虚拟内存,而这些交换空间都是系统管理员预先配置好的[^1]。
常用 free free -k # 以KB为单位 free -m # 以MB为单位 free -g # 以GB为单位 free -h # 人类可读 输出 total used free shared buffers cached Mem 3856200 3321044 535156 251096 232084 1406376 -/+ buffers/cache 1682584 2173616 Swap 3999740 482480 3517260 total
在Linux系统中,我们经常用free命令来查看系统内存的使用状态。在一个RHEL6的系统上,free命令的显示内容大概是这样一个状态:
1. Linux物理内存三级架构 对于内存管理,Linux采用了与具体体系架构不相关的设计模型,实现了良好的可伸缩性。它主要由内存节点node、内存区域zone和物理页框page三级架构组成。
长时间运行的Linux服务器,通常 free 的内存越来越少,让人觉得 Linux 特别能“吃”内存,甚至有人专门做了个网站 LinuxAteMyRam.com解释这个现象。实际上 Linux 内核会尽可能的对访问过的文件进行缓存,来弥补磁盘和内存之间巨大的延迟差距。缓存文件内容的内存就是 Page Cache。
分页单元可以实现把线性地址转换为物理地址, 为了效率起见, 线性地址被分为固定长度为单位的组, 称为”页”, 页内部的线性地址被映射到连续的物理地址. 这样内核可以指定一个页的物理地址和其存储权限, 而不用指定页所包含的全部线性地址的存储权限.
前言: 先来回顾一下Linux平台上的节约内存的方案: swap:通过LRU淘汰掉掉一部分page,把这些page交换到磁盘上。再次访问到这些page的时候,kernel再把它们从磁盘load进内存中。 zram:内存压缩技术。通过压缩lzo算法把页面压缩,也可以节省一部分内存。作者第一次知道zram是在Android中见到的,因为一般的手机使用的emmc flash,是有读写寿命的(作者看到过一份实验数据,某厂家的emmc在连续写入数据三天后,emmc就已经挂了),不能打开swap(因为swap会增加大量
Linux的内存管理可谓是学好Linux的必经之路,也是Linux的关键知识点,有人说打通了内存管理的知识,也就打通了Linux的任督二脉,这一点不夸张。有人问网上有很多Linux内存管理的内容,为什么还要看你这一篇,这正是我写此文的原因,网上碎片化的相关知识点大都是东拼西凑,先不说正确性与否,就连基本的逻辑都没有搞清楚,我可以负责任的说Linux内存管理只需要看此文一篇就可以让你入Linux内核的大门,省去你东找西找的时间,让你形成内存管理知识的闭环。 文章比较长,做好准备,深呼吸,让我们一起打开Lin
在我们进行数据持久化,对文件内容进行落盘处理时,我们时常会使用fsync操作,该操作会将文件关联的脏页(dirty page)数据(实际文件内容及元数据信息)一同写回磁盘。这里提到的脏页(dirty page)即为页缓存(page cache)。
Linux的内存管理可谓是学好Linux的必经之路,也是Linux的关键知识点,有人说打通了内存管理的知识,也就打通了Linux的任督二脉,这一点不夸张。有人问网上有很多Linux内存管理的内容,为什么还要看你这一篇,这正是我写此文的原因,网上碎片化的相关知识点大都是东拼西凑,先不说正确性与否,就连基本的逻辑都没有搞清楚,我可以负责任的说Linux内存管理只需要看此文一篇就可以让你入Linux内核的大门,省去你东找西找的时间,让你形成内存管理知识的闭环。
http://www.brendangregg.com/blog/2018-01-17/measure-working-set-size.html
[注: 转载自今日头条号"闪念基因"] 在我们进行数据持久化,对文件内容进行落盘处理时,我们时常会使用fsync操作,该操作会将文件关联的脏页(dirty page)数据(实际文件内容及元数据信息)一同写回磁盘。这里提到的脏页(dirty page)即为页缓存(page cache)。
我们接着看linux初始化内存的下半部分,等内存初始化后就可以进入真正的内存管理了,初始化我总结了一下,大体分为三步:
如图,当我们查看内存信息时,通常会使用vmstat或free命令。在使用vmstat -S M时,会看到下面的结果。
我们知道文件一般存放在硬盘(机械硬盘或固态硬盘)中,CPU 并不能直接访问硬盘中的数据,而是需要先将硬盘中的数据读入到内存中,然后才能被 CPU 访问。
传统的多核运算是使用SMP(Symmetric Multi-Processor )模式:将多个处理器与一个集中的存储器和I/O总线相连。所有处理器只能访问同一个物理存储器,因此SMP系统有时也被称为一致存储器访问(UMA)结构体系,一致性意指无论在什么时候,处理器只能为内存的每个数据保持或共享唯一一个数值。
网上已经有很多关于Linux内核内存管理的分析和介绍了,但是不影响我再写一篇:一方面是作为其他文章的补充,另一方面则是自己学习的记录、总结和沉淀。
在 Linux 系统中,我们经常用 free 命令来查看系统内存的使用状态。在个 RHEL6 的系统上,free 命令的显示内容大概是这样一个状态: 这里的默认显示单位是 kb,我的服务器是 128
在内核初始化完成之后, 内存管理的责任就由伙伴系统来承担. 伙伴系统基于一种相对简单然而令人吃惊的强大算法.
作者简介:许庆伟,Linux Kernel Security Researcher & Performance Developer 众所周知,Linux内核和CPU处理器负责将虚拟内存映射到物理内存。为了提高效率,在一个称为页的内存组中创建一个内存映射,其中每个页的大小根据处理器的实际情况而来。尽管大多数处理器也支持更大的页,但默认通常是4 KB,。内核可以从页空闲列表中为物理内存页的申请提供分配,并且为了提高效率,为每个DRAM组和CPU均设计了维护这些请求的方案。内核程序可以通过分配器(比如slab分配
vmstat是Virtual Meomory Statistics(虚拟内存统计)的缩写,可对操作系统的虚拟内存、进程、CPU活动进行监控。是对系统的整体情况进行统计,不足之处是无法对某个进程进行深入分析。
指分配给用户的内存空间中未被使用的部分。例如进程需要使用3K bytes物理内存,于是向系统申请了大小等于3Kbytes的内存,但是由于Linux内核伙伴系统算法最小颗粒是4K bytes,所以分配的是4Kbytes内存,那么其中1K bytes未被使用的内存就是内存内碎片。
在上一节, 我们介绍了Linux内核怎么管理系统中的物理内存. 但有时候内核需要分配一些物理内存地址也连续的内存页, 所以Linux使用了 伙伴系统分配算法 来管理系统中的物理内存页.
内核文档Documentation/arm64/memory.rst描述了ARM64 Linux内核空间的内存映射情况,应该是此方面最权威文档。
前言: 我大天朝人觉得什么东西含量不够,叫做有“水份”。内存的含量不足,叫“balloon”。作者是外语专业毕业的,感觉不同国度的人虽然语言不同,但是表达出来的东西很相似。有点意思~ 代码分析: 代码路径:linux-4.0.4/drivers/virtio/virtio_balloon.c 1,Linux的memory balloon的实现上,MODULE_DESCRIPTION是“Virtio balloon driver”,以及driver注册的逻辑中,都会提到virtio。简单来说,virtio是虚
过去,CPU的地址总线只有32位, 32的地址总线无论是从逻辑上还是从物理上都只能描述4G的地址空间(232=4Gbit),在物理上理论上最多拥有4G内存(除了IO地址空间,实际内存容量小于4G),逻辑空间也只能描述4G的线性地址空间。
为了支持NUMA模型,也即CPU对不同内存单元的访问时间可能不同,此时系统的物理内存被划分为几个节点(node), 一个node对应一个内存簇bank,即每个内存簇被认为是一个节点
对于用户空间的应用程序,我们通常根本不关心page的物理存放位置,因为我们用的是虚拟地址。所以,只要虚拟地址不变,哪怕这个页在物理上从DDR的这里飞到DDR的那里,用户都基本不感知。那么,为什么要写一篇论述页迁移的文章呢?
熊军(老熊) 云和恩墨西区总经理 Oracle ACED,ACOUG核心会员 PC Server发展到今天,在性能方面有着长足的进步。64位的CPU在数年前都已经进入到寻常的家用PC之中,更别说是更高端的PC Server;在Intel和AMD两大处理器巨头的努力下,x86 CPU在处理能力上不断提升;同时随着制造工艺的发展,在PC Server上能够安装的内存容量也越来越大,现在随处可见数十G内存的PC Server。正是硬件的发展,使得PC Server的处理能力越来越强大,性能越来越高。而在稳定性
在博客 【Linux 内核 内存管理】虚拟地址空间布局架构 ⑦ ( vm_area_struct 结构体成员分析 | vm_start | vm_end | vm_next | vm_prev |vm_rb) 中 , 分析了 vm_start vm_end vm_next vm_prev vm_rb 这
在虚拟内存中,页表是个映射表的概念, 即从进程能理解的线性地址(linear address)映射到存储器上的物理地址(phisical address).
页是信息的物理单位, 分页是为了实现非连续分配, 以便解决内存碎片问题, 或者说分页是由于系统管理的需要. 段是信息的逻辑单位,它含有一组意义相对完整的信息, 分段的目的是为了更好地实现共享, 满足用户的需要.
x86 CPU采用了段页式地址映射模型。进程代码中的地址为逻辑地址,经过段页式地址映射后,才真正访问物理内存。
Page cache是通过将磁盘中的数据缓存到内存中,从而减少磁盘I/O操作,从而提高性能。此外,还要确保在page cache中的数据更改时能够被同步到磁盘上,后者被称为page回写(page writeback)。一个inode对应一个page cache对象,一个page cache对象包含多个物理page。
在linux内核中支持3中内存模型,分别是flat memory model,Discontiguous memory model和sparse memory model。所谓memory model,其实就是从cpu的角度看,其物理内存的分布情况,在linux kernel中,使用什么的方式来管理这些物理内存。另外,需要说明的是:本文主要focus在share memory的系统,也就是说所有的CPUs共享一片物理地址空间的。
领取专属 10元无门槛券
手把手带您无忧上云